(本小題滿分15分)已知O為坐標(biāo)原點(diǎn),點(diǎn)A、B分別在x軸,y軸上運(yùn)動(dòng),且|AB|=8,動(dòng)點(diǎn)P滿足=,設(shè)點(diǎn)P的軌跡為曲線C,定點(diǎn)為M(4,0),直線PM交曲線C于另外一點(diǎn)Q.(1)求曲線C的方程;(2)求△OPQ面積的最大值.
(1) +=1.
(2)△OPQ的面積最大值為.
【解析】(1)設(shè)A(a,0),B(0,b),P(x,y),
則=(x-a,y),=(-x,b-y),
∵=,∴∴a=x,b=y(tǒng).
又|AB|==8,∴+=1.
∴曲線C的方程為+=1.
(2)由(1)可知,M(4,0)為橢圓+=1的右焦點(diǎn),
設(shè)直線PM方程為x=my+4,由消去x得
(9m2+25)y2+72my-81=0,
∴|yP-yQ|=
=. ∴S△OPQ=|OM||yP-yQ|=2×
===≤=,
當(dāng)=,
即m=±時(shí),△OPQ的面積取得最大值為,此時(shí)直線方程為3x±y-12=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分15分)
已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,試分別解答以下兩小題.
(。┤舨坏仁對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍;
(ⅱ)若是兩個(gè)不相等的正數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題
(本小題滿分15分).
已知、分別為橢圓:的
上、下焦點(diǎn),其中也是拋物線:的焦點(diǎn),
點(diǎn)是與在第二象限的交點(diǎn),且。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn)P(1,3)和圓:,過(guò)點(diǎn)P的動(dòng)直線與圓相交于不同的兩點(diǎn)A,B,在線段AB取一點(diǎn)Q,滿足:,(且)。求證:點(diǎn)Q總在某定直線上。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題
(本小題滿分15分)
如圖已知,橢圓的左、右焦點(diǎn)分別為、,過(guò)的直線與橢圓相交于A、B兩點(diǎn)。
(Ⅰ)若,且,求橢圓的離心率;
(Ⅱ)若求的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題
(本小題滿分15分)若函數(shù)在定義域內(nèi)存在區(qū)間,滿足在上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052202033078124869/SYS201205220205036875888611_ST.files/image002.png">,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.
(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說(shuō)明理由;
(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年江蘇省高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題
(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:
(1)第1次抽到理科題的概率;
(2)第1次和第2次都抽到理科題的概率;
(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com