【題目】由等式x4+a1x3+a2x2+a3x+a4=(x+1)4+b1(x+1)3+b2(x+1)2+b3(x+1)+b4 , 定義映射f:(a1 , a2 , a3 , a4)→(b1 , b2 , b3 , b4),則f(4,3,2,1)等于(
A.(1,2,3,4)
B.(0,3,4,0)
C.(﹣1,0,2,﹣2)
D.(0,﹣3,4,﹣1)

【答案】D
【解析】解:比較等式兩邊x3的系數(shù),得4=4+b1 , 則b1=0,故排除A,C;
再比較等式兩邊的常數(shù)項(xiàng),有1=1+b1+b2+b3+b4 ,
∴b1+b2+b3+b4=0.故排除B
故應(yīng)選D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解映射的相關(guān)定義的相關(guān)知識(shí),掌握對(duì)于映射f:A→B來說,則應(yīng)滿足:(1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè);(3)不要求集合B中的每一個(gè)元素在集合A中都有原象;注意:映射是針對(duì)自然界中的所有事物而言的,而函數(shù)僅僅是針對(duì)數(shù)字來說的.所以函數(shù)是映射,而映射不一定的函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列命題:

①命題“x0∈R,x+1>x0+1”的否定是“x∈R,x2+1<x+1”;

②已知p,q為兩個(gè)命題,若“p∨q”為假命題,則“(綈p)∧(綈q)”為真命題;

③“a>2”是“a>5”的充分不必要條件;

④“若xy=0,則x=0且y=0”的逆否命題為真命題.

其中所有真命題的序號(hào)是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:1=1,1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,……,由以上可推測(cè)出一個(gè)一般性結(jié)論:對(duì)于n∈N*,1+2+…+n+…+2+1=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x(x﹣2)≤0},B={﹣2,﹣1,0,1,2},則A∩B=(
A.{﹣2,﹣1}
B.{1,2}
C.{﹣1,0,1,2}
D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某濱海城市計(jì)劃沿一條濱海大道修建7個(gè)海邊主題公園,由于資金的原因,打算減少2個(gè)海邊主題公園,兩端海邊主題公園不在調(diào)整計(jì)劃之列,相鄰的兩個(gè)海邊主題公園不能在同時(shí)調(diào)整,則調(diào)整方案的種數(shù)是(
A.12
B.8
C.6
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合M={x|﹣2<x<3},N={x|2x+1≤1},則M∩(RN)=(
A.(3,+∞)
B.(﹣2,﹣1]
C.(﹣1,3)
D.[﹣1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+a|+|x﹣3|(a∈R).
(1)當(dāng)a=1時(shí),求不等式f(x)≥x+8的解集;
(2)若函數(shù)f(x)的最小值為5,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)整數(shù)315和2016的最大公約數(shù)是

A.38 B.57 C.63 D.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線y2=4x的焦點(diǎn)坐標(biāo)是( 。
A.(0,2)
B.(0,1)
C.(2,0)
D.(1,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案