精英家教網 > 高中數學 > 題目詳情
曲線y=x3+1在點(-1,0)處的切線方程為( 。
A.3x+y+3=0B.3x-y+3=0C.3x-y=0D.3x-y-3=0
y′=3x2
y′|x=1=3,切點為(-1,0)
∴曲線y=x3+1在點(-1,0)切線方程為y-0=3[x-(-1)],
即3x-y+3=0
故選B.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=x3+2f′(x)x,x∈[-3,3]
(1)求f(x)的極值;
(2)討論關于x的方程f(x)=m的實根個數.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若f(x)=x3+2x,則曲線y=f(x)在點(1,f(1))處的切線方程為( 。
A.5x-y-2=0B.5x-y+2=0C.5x+y-2=0D.3x+y-2=0

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=
1
3
x3+
1
2
ax2
+2bx+c在R上可導.
(1)若f(x)在區(qū)間[-1,2]上為減函數,且b=3a,求a的取值范圍;
(2)若f(x)的極大值點在(0,1)內,極小值點在(1,2)內,求
b-2
a-1
的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

曲線f(x)=
1
3
x3
在x=2處切線方程的斜率是(  )
A.4B.2C.1D.
8
3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知f(x)=x3的切線的斜率等于1,則其切線方程有(  )
A.1個B.2個C.多于兩個D.不能確定

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

方程x3-3x+a+1=0在x∈[-2,+∞)上有三個不同的實根,則實數a的取值范圍為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知曲線y=
1
3
x3+
1
2
x2+4x-7在點Q處的切線的傾斜角α滿足sin2α=
16
17
,則此切線的方程為( 。
A.4x-y+7=0或4x-y-6
5
6
=0
B.4x-y-6
5
6
=0
C.4x-y-7=0或4x-y-6
5
6
=0
D.4x-y-7=0

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數在區(qū)間上的最大值是
A.B.C.D.

查看答案和解析>>

同步練習冊答案