14.數(shù)列中, 則數(shù)列的極限值( �。�

A.等于             B.等于              C.等于        D.不存在

B

解析:當(dāng)n→∞時(shí),an=,

an==1.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}(n∈N*)中,a1=a,an+1是函數(shù)fn(x)=
1
3
x3-
1
2
(3an+n2)x2+3n2anx
的極小值點(diǎn).若數(shù)列{an}是等比數(shù)列,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①命題“所有的正方形都是矩形”的否定是“所有的正方形都不是矩形”;
②設(shè)p、q 為簡(jiǎn)單命題,則“p且q”為假是“p或q為假的必要而不充分條件”;
③函數(shù)f(x)=e-xx2的極小值為f(0),極大值為f(2);
④雙曲線(xiàn)的漸近線(xiàn)方程是y=±
3
4
x
,則該雙曲線(xiàn)的離心率是
5
4

⑤等差數(shù)列{an}中首項(xiàng)為a1,則數(shù)列{2an}為等比數(shù)列;
其中真命題的序號(hào)為
②③⑤
②③⑤
(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}(n∈N +)中,a1=0,an+1是函數(shù)f(x)=
1
3
x3-
1
2
(3an+n2)x2+3n2anx
的極小值點(diǎn),則通項(xiàng)an=
(n-1)2,(n=1,2)
3•3n-3,(n≥3)
(n-1)2,(n=1,2)
3•3n-3,(n≥3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年遼寧省北鎮(zhèn)高中高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:填空題

給出下列命題:
①命題“所有的正方形都是矩形”的否定是“所有的正方形都不是矩形”;
②設(shè)p、q 為簡(jiǎn)單命題,則“p且q”為假是“p或q為假的必要而不充分條件;
③函數(shù)的極小值為,極大值為;
④雙曲線(xiàn)的漸近線(xiàn)方程是,則該雙曲線(xiàn)的離心率是
⑤等差數(shù)列中首項(xiàng)為,則數(shù)列為等比數(shù)列;
其中真命題的序號(hào)為                (寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列中,若 a1,a2 是正整數(shù),且=|-|,=3,4,5,…,則稱(chēng)||

為“絕對(duì)差數(shù)列”.

(Ⅰ)舉出一個(gè)前五項(xiàng)不為零的“絕對(duì)差數(shù)列”(只要求寫(xiě)出前十項(xiàng));

(Ⅱ)若“絕對(duì)差數(shù)列”||中,=3, =0,數(shù)列||滿(mǎn)足=++

n=1,2,3,…,分雖判斷當(dāng)時(shí), 的極限是否存在,如果存在,求出其極

限值;

(Ⅲ)證明:任何“絕對(duì)差數(shù)列”中總含有無(wú)窮多個(gè)為零的項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案
闁稿骏鎷� 闂傚偊鎷�