在橢圓中,分別是其左右焦點(diǎn),若,則該橢圓離心率的取值范圍是          (    )

    A.   B.  C.   D.

 

【答案】

 【解析】B 根據(jù)橢圓定義,將設(shè)代入得,根據(jù)橢圓的幾何性質(zhì),,故,即,故,即,又,故該橢圓離心率的取值范圍是。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn),若在其右準(zhǔn)線上存在P,使線段PF1的中垂線過點(diǎn)F2,則橢圓離心率的取值范圍是(  )
A、(0,
2
2
]
B、(0,
3
3
]
C、[
2
2
,1)
D、[
3
3
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),其焦距為2c,若
c
a
=
5
-1
2
(≈0.618),則稱橢圓C為“黃金橢圓”.
(1)求證:在黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)中,a、b、c成等比數(shù)列.
(2)黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)為F2(c,0),P為橢圓C上的任意一點(diǎn).是否存在過點(diǎn)F2、P的直線l,使l與y軸的交點(diǎn)R滿足
RP
=-3
PF2
?若存在,求直線l的斜率k;若不存在,請說明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn)分別是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)為頂點(diǎn)的菱形ADBE的內(nèi)切圓過焦點(diǎn)F1、F2.試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關(guān)的真命題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(07年湖南卷理)設(shè)分別是橢圓)的左、右焦點(diǎn),若在其右準(zhǔn)線上存在 使線段的中垂線過點(diǎn),則橢圓離心率的取值范圍是(    )

A.        B.         C.         D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省高三3月月考文科數(shù)學(xué)試卷 題型:選擇題

設(shè)分別是橢圓的左、右焦點(diǎn),若在其右準(zhǔn)線上存在點(diǎn),使線段的中垂線過點(diǎn),則橢圓離心率的取值范圍是

A、        B、        C、     D、

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高考模擬試題(1) 題型:解答題

已知橢圓),其焦距為,若),則稱橢圓為“黃金橢圓”.

(1)求證:在黃金橢圓)中,、成等比數(shù)列.

(2)黃金橢圓)的右焦點(diǎn)為,為橢圓上的

任意一點(diǎn).是否存在過點(diǎn)、的直線,使軸的交點(diǎn)滿足?若存在,求直線的斜率;若不存在,請說明理由.

(3)在黃金橢圓中有真命題:已知黃金橢圓)的左、右焦點(diǎn)分別是、,以、、為頂點(diǎn)的菱形的內(nèi)切圓過焦點(diǎn)、.試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關(guān)的真命題,并加以證明.

 

查看答案和解析>>

同步練習(xí)冊答案