分析 由已知利用同角三角函數基本關系式可求sin(x+$\frac{π}{4}$)的值,進而利用兩角差的余弦函數公式可求cosx的值,根據二倍角的余弦函數公式即可得解cos2x的值.
解答 解:∵$\frac{17π}{12}$<x<$\frac{7π}{4}$,cos(x+$\frac{π}{4}$)=$\frac{3}{5}$,
∴$\frac{5π}{3}$<x+$\frac{π}{4}$<2π,
∴sin(x+$\frac{π}{4}$)=-$\frac{4}{5}$,
∴cosx=cos[(x+$\frac{π}{4}$)-$\frac{π}{4}$]=cos(x+$\frac{π}{4}$)cos$\frac{π}{4}$+sin(x+$\frac{π}{4}$)sin$\frac{π}{4}$=$\frac{3}{5}×\frac{\sqrt{2}}{2}$+(-$\frac{4}{5}$)×$\frac{\sqrt{2}}{2}$=-$\frac{\sqrt{2}}{10}$,
∴cos2x=2cos2x-1=$-\frac{24}{25}$.
故答案為:$-\frac{24}{25}$.
點評 本題主要考查了同角三角函數基本關系式,兩角差的余弦函數公式,二倍角的余弦函數公式在三角函數化簡求值中的應用,考查了計算能力和轉化思想,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | (-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$) | B. | (-∞,-1)∪(0,+∞) | C. | (-$\frac{2\sqrt{3}}{3}$,0) | D. | (-$\frac{2\sqrt{3}}{3}$,-1)∪({0,$\frac{2\sqrt{3}}{3}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{5}{12}$ | B. | $\frac{1}{2}$ | C. | $\frac{7}{12}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 最大值是$\sqrt{2}$,周期是π | B. | 最小值是-2,周期是2π | ||
C. | 最大值是$\sqrt{2}$,周期是2π | D. | 最小值是-2,周期是π |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $-\frac{π}{8}$ | B. | $\frac{π}{8}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{8}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com