精英家教網 > 高中數學 > 題目詳情
已知橢圓C:
x2
a2
+
y2
b2
=1 (a>b>0)
,其左、右兩焦點分別為F1、F2.直線L經過橢圓C的右焦點F2,且與橢圓交于A、B兩點.若A、B、F1構成周長為4
2
的△ABF1,橢圓上的點離焦點F2最遠距離為
2
+1
,且弦AB的長為
4
2
3
,求橢圓和直線L的方程.
分析:由題意知,a,b,c滿足
4a=4
2
 
a+c=
2
+1
 
a2=b2+c2
,解方程即可得到橢圓的方程,再由弦AB的長為
4
2
3
,得到
[(x1+x2)2-4x1x2](1+k2)
=
4
2
3
,聯(lián)立直線與橢圓方程得到
x1+x2=
4k2
1+2k2
x1x2=
2k2-2
1+2k2
  代入上式,即可得到k,繼而求出直線L的方程.
解答:解:依題意,設該橢圓的焦距為2c,
4a=4
2
 
a+c=
2
+1
 
a2=b2+c2
,
解得a=
2
,b=c=1,
所以橢圓方程為
x2
2
+y2=1

由題意可設直線L的方程為y=k(x-1),
聯(lián)立直線與橢圓方程得到
y=k(x-1)
x2
2
+y2=1
,
整理得(1+2k2)x2-4k2x+2k2-2=0,
若A,B兩點的橫坐標為x1,x2,
x1+x2=
4k2
1+2k2
x1x2=
2k2-2
1+2k2
   (*),
△=16k4-8(k2-1)(1+2k2)>0,
又由弦AB的長為
4
2
3
,
[(x1+x2)2-4x1x2](1+k2)
=
4
2
3

將(*)式代入得k2=1,即k=±1
所以所求橢圓方程為
x2
2
+y2=1
,直線方程為y=x-1或y=-x+1.
點評:本題考橢圓的簡單性質,著重考查橢圓定義的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經過點P(1,
3
2
)

(1)求橢圓C的方程;
(2)設F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2
3
,右焦點F與拋物線y2=4x的焦點重合,O為坐標原點.
(1)求橢圓C的方程;
(2)設A、B是橢圓C上的不同兩點,點D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經過點A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點,且以MN為直徑的圓經過坐標原點O.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長軸長是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設過點P(0,-2)的直線l交橢圓于M,N兩點,且M,N不與橢圓的頂點重合,若以MN為直徑的圓過橢圓C的右頂點A,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長為2,離心率為
2
2
,設過右焦點的直線l與橢圓C交于不同的兩點A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習冊答案