【題目】某企業(yè)批量生產(chǎn)了一種汽車配件,總數(shù)為,配件包裝上標(biāo)有從1的連續(xù)自然數(shù)序號,為對配件總數(shù)進(jìn)行估計,質(zhì)檢員隨機(jī)抽取了個配件,序號從小到大依次為,,,,這個序號相當(dāng)于從區(qū)間上隨機(jī)抽取了個整數(shù),這個整數(shù)將區(qū)間分為個小區(qū)間,,,.由于這個整數(shù)是隨機(jī)抽取的,所以前個區(qū)間的平均長度與所有個區(qū)間的平均長度近似相等,進(jìn)而可以得到的估計值.已知,質(zhì)檢員隨機(jī)抽取的配件序號從小到大依次為83,135,274,3104

1)用上面的方法求的估計值.

2)將(1)中的估計值作為這批汽車配件的總數(shù),從中隨機(jī)抽取100個配件測量其內(nèi)徑(單位:),繪制出頻率分布直方圖如下:

將這100個配件的內(nèi)徑落入各組的頻率視為這個配件內(nèi)徑分布的概率,已知標(biāo)準(zhǔn)配件的內(nèi)徑為200,把這個配件中內(nèi)徑長度最接近標(biāo)準(zhǔn)配件內(nèi)徑長度的800個配件定義為優(yōu)等品,求優(yōu)等品配件內(nèi)徑的取值范圍(結(jié)果保留整數(shù)).

【答案】1的估計值為3200.(2

【解析】

(1)由題意可知, ,代入即可求得的估計值;

2)先求得優(yōu)等品的概率為,設(shè)優(yōu)等品的內(nèi)徑范圍為,,計算即可求得,即可得出結(jié)果.

解:(1)抽取的32個配件將區(qū)間劃分為33個區(qū)間,平均長度為,

31個區(qū)間平均長度為,由題設(shè)得,得的估計值為3200

2)抽取的800件優(yōu)等品占總數(shù)的比為

設(shè)優(yōu)等品的內(nèi)徑范圍為,由題設(shè)知

由直方圖知,故

因此

,得,取

因此優(yōu)等品的內(nèi)徑范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某央企在一個社區(qū)隨機(jī)采訪男性和女性用戶各50名,統(tǒng)計他(她)們一天()使用手機(jī)的時間,其中每天使用手機(jī)超過6小時(含6小時)的用戶稱為手機(jī)迷,否則稱其為非手機(jī)迷,調(diào)查結(jié)果如下:

男性用戶的頻數(shù)分布表

男性用戶日用時間分組(

頻數(shù)

20

12

8

6

4

女性用戶的頻數(shù)分布表

女性用戶日用時間分組(

頻數(shù)

25

10

6

8

1

1)分別估計男性用戶,女性用戶手機(jī)迷的頻率;

2)求男性用戶每天使用手機(jī)所花時間的中位數(shù);

3)求女性用戶每天使用手機(jī)所花時間的平均數(shù)與標(biāo)準(zhǔn)差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廣元市某校高三數(shù)學(xué)備課組為了更好地制定二輪復(fù)習(xí)的計劃,開展了試卷講評后效果的調(diào)研,從上學(xué)期市一診考試數(shù)學(xué)試題中選出一些學(xué)生易錯題,重新進(jìn)行測試,并認(rèn)為做這些題不出任何錯誤的同學(xué)為“過關(guān)”,出了錯誤的同學(xué)為“不過關(guān)”,現(xiàn)隨機(jī)抽查了年級人,他們的測試成績的頻數(shù)分布如下表:

市一診分?jǐn)?shù)段

人數(shù)

5

10

15

13

7

“過關(guān)”人數(shù)

1

3

8

8

6

1)由以上統(tǒng)計數(shù)據(jù)完成如下列聯(lián)表,并判斷是否有的把握認(rèn)為市一診數(shù)學(xué)成績不低于分與測試“過關(guān)”有關(guān)?說明你的理由;

分?jǐn)?shù)低于分人數(shù)

分?jǐn)?shù)不低于分人數(shù)

合計

“過關(guān)”人數(shù)

“不過關(guān)”人數(shù)

合計

2)根據(jù)以上數(shù)據(jù)估計該校市一診考試數(shù)學(xué)成績的中位數(shù).下面的臨界值表供參考:

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系.xOy中,曲線C1的參數(shù)方程為 為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.

1)求曲線C1的普通方程和C2的直角坐標(biāo)方程;

2)已知曲線C2的極坐標(biāo)方程為,點A是曲線C3C1的交點,點B是曲線C3C2的交點,且AB均異于原點O,且|AB|=4,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線在點處的切線l過點,求實數(shù)的值;

2)若函數(shù)有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為,,離心率是P為橢圓上的動點.當(dāng)取最大值時,的面積是

1)求橢圓的方程:

2)若動直線l與橢圓E交于AB兩點,且恒有,是否存在一個以原點O為圓心的定圓C,使得動直線l始終與定圓C相切?若存在,求圓C的方程,若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某工廠的一個車間抽取某種產(chǎn)品50件,產(chǎn)品尺寸(單位:cm)落在各個小組的頻數(shù)分布如下表:

數(shù)據(jù)分組

[12.5,15.5

[15.5,18.5

[18.521.5

[21.5,24.5

[24.5,27.5

[27.5,30.5

[30.533.5

頻數(shù)

3

8

9

12

10

5

3

1)根據(jù)頻數(shù)分布表,求該產(chǎn)品尺寸落在[27.5,33.5]內(nèi)的概率;

2)求這50件產(chǎn)品尺寸的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

3)根據(jù)頻數(shù)分布對應(yīng)的直方圖,可以認(rèn)為這種產(chǎn)品尺寸服從正態(tài)分布,其中近似為樣本平均值,近似為樣本方差,經(jīng)計算得.利用該正態(tài)分布,求.

附:(1)若隨機(jī)變量服從正態(tài)分布,則;(2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場為吸引顧客消費(fèi)推出一項優(yōu)惠活動.活動規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費(fèi)218元,可轉(zhuǎn)動轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.

1)若某位顧客消費(fèi)128元,求返券金額不低于30元的概率;

2)若某位顧客恰好消費(fèi)280元,并按規(guī)則參與了活動,他獲得返券的金額記為(元).求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案