分析 (1)利用點(diǎn)的坐標(biāo)在曲線上,代入求解即可.
(2)設(shè)直線l的方程為y=kx-1,又設(shè)A(x1,y1),B(x2,y2),則A'(-x1,y1),聯(lián)立直線與拋物線方程,利用韋達(dá)定理以及判別式,求出直線的斜率,推出直線方程,利用直線系求解即可.
解答 解:(1)將點(diǎn)(2,1)代入拋物線x2=2py的方程得,p=2,
所以,拋物線C的標(biāo)準(zhǔn)方程為x2=4y. …(4分)
(2)設(shè)直線l的方程為y=kx-1,又設(shè)A(x1,y1),B(x2,y2),則A'(-x1,y1),
由$\left\{{\begin{array}{l}{y=\frac{1}{4}{x^2}}\\{y=kx-1}\end{array}}\right.$得x2-4kx+4=0,則△=16k2-16>0,x1•x2=4,x1+x2=4k,
所以${k_{A'B}}=\frac{{{y_2}-{y_1}}}{{{x_2}-(-{x_1})}}=\frac{{\frac{{{x_2}^2}}{4}-\frac{{{x_1}^2}}{4}}}{{{x_1}+{x_2}}}=\frac{{{x_2}-{x_1}}}{4}$,
于是直線A'B的方程為$y-\frac{{{x_2}^2}}{4}=\frac{{{x_2}-{x_1}}}{4}(x-{x_2})$,…(8分)
所以,$y=\frac{{{x_2}-{x_1}}}{4}(x-{x_2})+\frac{{{x_2}^2}}{4}=\frac{{{x_2}-{x_1}}}{4}x+1$,當(dāng)x=0時(shí),y=1,
所以直線A'B過(guò)定點(diǎn)(0,1). …(10分)
點(diǎn)評(píng) 本題考查拋物線方程的求法,直線與拋物線的位置關(guān)系,直線系方程的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | -3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 16 | B. | 17 | C. | 18 | D. | 19 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{2}{3}$ | C. | $\frac{4}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com