A. | $\frac{λ_1}{λ_2}=\frac{c}$ | B. | $\frac{λ_1^2}{λ_2^2}=\frac{c}$ | C. | $\frac{λ_1}{λ_2}=\frac{c^2}{b^2}$ | D. | $\frac{λ_1^2}{λ_2^2}=\frac{c}$ |
分析 利用O為△ABC內(nèi)角平分線的交點(diǎn),則有a×$\overrightarrow{OA}$+b×$\overrightarrow{OB}$+c×$\overrightarrow{OC}$=0,再利再利用三角形中向量之間的關(guān)系,將等式變形為$\overrightarrow{AO}$=$\frac{a+b+c}$$\overrightarrow{AB}$+$\frac{c}{a+b+c}$$\overrightarrow{AC}$,利用平面向量基本定理即可解.
解答 解:設(shè)O是△ABC的內(nèi)心,AB=c,AC=b,
則a×$\overrightarrow{OA}$+b×$\overrightarrow{OB}$+c×$\overrightarrow{OC}$=0,
∴a×$\overrightarrow{OA}$+b×($\overrightarrow{OA}$+$\overrightarrow{AB}$)+c×($\overrightarrow{OA}$+$\overrightarrow{AC}$)=0,
∴(a+b+c)$\overrightarrow{AO}$=b$\overrightarrow{AB}$+c$\overrightarrow{AC}$,
∴$\overrightarrow{AO}$=$\frac{a+b+c}$$\overrightarrow{AB}$+$\frac{c}{a+b+c}$$\overrightarrow{AC}$,
∵$\overrightarrow{AO}={λ_1}\overrightarrow{AB}+{λ_2}\overrightarrow{AC}$,
∴λ1=$\frac{a+b+c}$,λ2=$\frac{c}{a+b+c}$,
∴$\frac{{λ}_{1}}{{λ}_{2}}$=$\frac{c}$
故選:A
點(diǎn)評(píng) 本題考查向量知識(shí),考查平面向量基本定理的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a∥α,b∥β,則a∥b | B. | 若a?α,b?β,a∥b,則α∥β | ||
C. | 若a∥b,b∥α,α∥β,則a∥β | D. | 若a⊥α,a⊥β,b⊥β,則b⊥α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | -5 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x<1或x>3 | B. | 1<x<3 | C. | 1<x<2 | D. | x<2或x>3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com