集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)若B⊆A,求實數(shù)m的取值范圍;
(2)當(dāng)x∈Z時,求A的非空真子集的個數(shù);
(3)當(dāng)x∈R時,沒有元素x使x∈A與x∈B同時成立,求實數(shù)m的取值范圍.
(1)當(dāng)m+1>2m-1,即m<2時,B=∅滿足B⊆A.
當(dāng)m+1≤2m-1,即m≥2時,要使B⊆A成立,
m+1≥-2
2m-1≤5
,可得2≤m≤3,
綜上,m≤3時有B⊆A.

(2)當(dāng)x∈Z時,A={-2,-1,0,1,2,3,4,5},
求A的非空真子集的個數(shù),即不包括空集和集合本身,
所以A的非空真子集個數(shù)為28-2=254.

(3)因為x∈R,且A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},又沒有元素x使x∈A與x∈B同時成立,
則①若B=∅,即m+1>2m-1,得m<2時滿足條件;
②若B≠∅,則要滿足的條件是
m+1≤2m-1
m+1>5
m+1≤2m-1
2m-1<-2

解得m>4.
綜上,有m<2或m>4.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)當(dāng)m=3時,求集合A∩B,A∪B;
(2)若A∩B=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|-2<x<1},集合B={x|-1<x<3},則A∪B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|
2+x2-x
>0}
,則A=
{x|-2<x<2}
{x|-2<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|-2<x<1},B={x|0<x<2}則集合A∩B=
{x|0<x<1}
{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|-2<x≤3},B={x|x<-1或x>4},則A∩(CUB)=( 。

查看答案和解析>>

同步練習(xí)冊答案