3.已知橢圓C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1的左、右頂點分別為A,B,F(xiàn)為橢圓C的右焦點,圓x2+y2=4上有一動點P,P不同于A,B兩點,直線PA與橢圓C交于點Q,則$\frac{{k}_{PB}}{{k}_{QF}}$的取值范圍是( 。
A.(-∞,-$\frac{3}{4}$)∪(0,$\frac{3}{4}$)B.(-∞,0)∪(0,$\frac{3}{4}$)C.(-∞,-1)∪(0,1)D.(-∞,0)∪(0,1)

分析 取特殊點P(0,2),P(0,-2),求出$\frac{{k}_{PB}}{{k}_{QF}}$,利用排除法,可得結(jié)論.

解答 解:取特殊點P(0,2),則PA方程為y=x+2
與橢圓方程聯(lián)立,可得7x2+16x+4=0=0,所以x=-2或-$\frac{2}{7}$,所以Q(-$\frac{2}{7}$,$\frac{12}{7}$),
∴kPB=-1,kQF=$\frac{\frac{12}{7}}{-\frac{2}{7}-1}$=-$\frac{3}{4}$,
∴$\frac{{k}_{PB}}{{k}_{QF}}$=$\frac{3}{4}$.
同理取P(0,-2),$\frac{{k}_{PB}}{{k}_{QF}}$=-$\frac{3}{4}$.
根據(jù)選項,排除A,B,C,
故選D.

點評 本題考查圓與圓錐曲線的綜合,考查特殊法的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$\overrightarrow a=(sinx,cosx),\overrightarrow b=(sinx,sinx),f(x)=2\overrightarrow a•\overrightarrow b$.
(Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ)畫出函數(shù)y=f(x)在區(qū)間$[{-\frac{π}{2},\frac{π}{2}}]$上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=4sin$\frac{π}{2}$x-$\sqrt{6x-{x}^{2}}$所有零點的和等于18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在四棱錐P-ABCD中,底面是邊長為2的菱形,∠BAD=60°,PB=PD=2,PA=$\sqrt{6}$,AC∩BD=O
(Ⅰ)設(shè)平面ABP∩平面DCP=l,證明:l∥AB
(Ⅱ)若E是PA的中點,求三棱錐P-BCE 的體積VP-BCE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知全集U={1,2,3,4,5,6,7},集合A={1,3,7},B={x|x=log2(a+1),a∈A},則(∁UA)∩(
(∁UB)=(  )
A.{1,3}B.{5,6}C.{4,5,6}D.{4,5,6,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.不等式2x2-x-3>0解集為( 。
A.{x|-1<x<$\frac{3}{2}$}B.{x|x>$\frac{3}{2}$或x<-1}C.{x|-$\frac{3}{2}$<x<1}D.{x|x>1或x<-$\frac{3}{2}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{5}cosa}\\{y=sinα}\end{array}\right.$(α為參數(shù)).以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+$\frac{π}{4}$)=$\sqrt{2}$.l與C交于A、B兩點.
(Ⅰ)求曲線C的普通方程及直線l的直角坐標(biāo)方程;
(Ⅱ)設(shè)點P(0,-2),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列 {an}  的前 n 項和為Sn,S1=6,S2=4,Sn>0且S2n,S2n-1,S2n+2成等比數(shù)列,S2n-1,S2n+2,S2n+1成等差數(shù)列,則a2016等于(  )
A.-1009B.-1008C.-1007D.-1006

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.等差數(shù)列{an}中,已知an>0,a2+a5+a8=33,且a1+2,a2+5,a3+13構(gòu)成等比數(shù)列{bn}的前三項.
(1)求數(shù)列{an},{bn}的通項公式;
(2)記${c_n}=\frac{a_n}{b_n}+1$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案