設(shè)數(shù)列{an} 對任意n∈N*和實數(shù)常數(shù),有,t∈R,a1=
(1)若{}是等比數(shù)列,求{an} 的通項公式;
(2)設(shè){bn}滿足bn=(1-an)an,其前n項和Tn,求證:Tn>
【答案】分析:(1)由題設(shè)知,再由{}是等比數(shù)列,得
(2)由bn=(1-an)an,由此入手能夠進(jìn)行證明.
解答:解:(1)由,t∈R,a1=,
,
∵{}是等比數(shù)列,
,

(2)由bn=(1-an)an
前n項和Tn=b1+b2+…+bn

=
點評:本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答,注意合理地選取公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對正整數(shù)n,設(shè)拋物線y2=2(2n+1)x,過P(2n,0)任作直線l交拋物線于An,Bn兩點,則數(shù)列{
OA
n
OB
n
2(n+1)
}
的前n項和公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知有窮數(shù)列A:a1,a2,…,an(n≥2,n∈N).定義如下操作過程T:從A中任取兩項ai,aj,將
ai+aj
1+aiaj
的值添在A的最后,然后刪除ai,aj,這樣得到一系列n-1項的新數(shù)列A1 (約定:一個數(shù)也視作數(shù)列);對A1的所有可能結(jié)果重復(fù)操作過程T又得到一系列n-2項的新數(shù)列A2,如此經(jīng)過k次操作后得到的新數(shù)列記作Ak.設(shè)A:-
5
7
,
3
4
,
1
2
,
1
3
,則A3的可能結(jié)果是( 。
A、0
B、
3
4
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:寧夏銀川一中2012屆高三第三次模擬考試數(shù)學(xué)理科試題 題型:013

已知有窮數(shù)列A:a1,a2,…,an(n≥2,n∈N).定義如下操作過程T:從A中任取兩項ai,aj,將的值添在A的最后,然后刪除ai,aj,這樣得到一系列n-1項的新數(shù)列A1(約定:一個數(shù)也視作數(shù)列);對A1的所有可能結(jié)果重復(fù)操作過程T又得到一系列n-2項的新數(shù)列A2,如此經(jīng)過k次操作后得到的新數(shù)列記作Ak.設(shè)A:,則A3的可能結(jié)果是

[  ]

A.

B.

C.

D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:寧夏銀川一中2012屆高三第三次模擬考試數(shù)學(xué)文科試題 題型:013

已知有窮數(shù)列A:a1,a2,…,an(n≥2,n∈N).定義如下操作過程T:從A中任取兩項ai,aj,將的值添在A的最后,然后刪除ai,aj,這樣得到一系列n-1項的新數(shù)列A1(約定:一個數(shù)也視作數(shù)列);對A1的所有可能結(jié)果重復(fù)操作過程T又得到一系列n-2項的新數(shù)列A2,如此經(jīng)過k次操作后得到的新數(shù)列記作Ak.設(shè)A:,則A3的可能結(jié)果是

[  ]

A.0

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市寶山區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:選擇題

已知有窮數(shù)列A:a1,a2,…,an(n≥2,n∈N).定義如下操作過程T:從A中任取兩項ai,aj,將的值添在A的最后,然后刪除ai,aj,這樣得到一系列n-1項的新數(shù)列A1 (約定:一個數(shù)也視作數(shù)列);對A1的所有可能結(jié)果重復(fù)操作過程T又得到一系列n-2項的新數(shù)列A2,如此經(jīng)過k次操作后得到的新數(shù)列記作Ak.設(shè)A:,則A3的可能結(jié)果是( )
A.0
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案