已知實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b的雙曲線S的焦點(diǎn)在x軸上,直線y=+x是雙曲線S的一條漸近線,而且原點(diǎn)O,點(diǎn)A(a,0)和點(diǎn)B(0,-b)使等式成立,
(Ⅰ)求雙曲線S的方程;
(Ⅱ)若雙曲線S上存在兩個(gè)點(diǎn)關(guān)于直線l:y=kx+4對(duì)稱,求實(shí)數(shù)k的取值范圍。
解:(Ⅰ)根據(jù)題意設(shè)雙曲線S的方程為,
,解方程組得
∴所求雙曲線的方程為。 
(Ⅱ)當(dāng)k=0時(shí),雙曲線S上顯然不存在兩個(gè)點(diǎn)關(guān)于直線l:y=kx+4對(duì)稱;
當(dāng)k≠0時(shí),設(shè)又曲線S上的兩點(diǎn)M、N關(guān)于直線l對(duì)稱,
由l⊥MN,直線MN的方程為,
則M、N兩點(diǎn)的坐標(biāo)滿足方程組
消去y得,
顯然,
,

設(shè)線段MN中點(diǎn)為,

在直線l:y=kx+4上,
,即,
,∴,解得m>0或m<-1,
,
,即,且k≠0,
∴k的取值范圍是。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年云南省高三第二次統(tǒng)一檢測(cè)數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)

        已知實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b的雙曲線S的焦點(diǎn)在x軸上,直線是雙曲線S的一條漸近線,而且原點(diǎn)O,點(diǎn)A(a,0)和點(diǎn)B(0,-b)使等式·成立.

   (I)求雙曲線S的方程;

   (II)若雙曲線S上存在兩個(gè)點(diǎn)關(guān)于直線對(duì)稱,求實(shí)數(shù)k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

        已知實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b的雙曲線S的焦點(diǎn)在x軸上,直線是雙曲線S的一條漸近線,而且原點(diǎn)O,點(diǎn)A(a,0)和點(diǎn)B(0,-b)使等式·成立.

   (I)求雙曲線S的方程;

   (II)若雙曲線S上存在兩個(gè)點(diǎn)關(guān)于直線對(duì)稱,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

        已知實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b的雙曲線S的焦點(diǎn)在x軸上,直線是雙曲線S的一條漸近線,而且原點(diǎn)O,點(diǎn)A(a,0)和點(diǎn)B(0,-b)使等式·成立.

   (I)求雙曲線S的方程;

   (II)若雙曲線S上存在兩個(gè)點(diǎn)關(guān)于直線對(duì)稱,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

        已知實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b的雙曲線S的焦點(diǎn)在x軸上,直線是雙曲線S的一條漸近線,而且原點(diǎn)O,點(diǎn)A(a,0)和點(diǎn)B(0,-b)使等式·成立.

   (I)求雙曲線S的方程;

   (II)若雙曲線S上存在兩個(gè)點(diǎn)關(guān)于直線對(duì)稱,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案