【題目】第35屆牡丹花會期間,我班有5名學(xué)生參加志愿者服務(wù),服務(wù)場所是王城公園和牡丹公園.
(1)若學(xué)生甲和乙必須在同一個公園,且甲和丙不能在同一個公園,則共有多少種不同的分配方案?
(2)每名學(xué)生都被隨機分配到其中的一個公園,設(shè)分別表示5名學(xué)生分配到王城公園和牡丹公園的人數(shù),記,求隨機變量的分布列和數(shù)學(xué)期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)當(dāng)m=1時,求曲線y=f(x)在點(1,f(1))處的切線斜率;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若函數(shù)在上為減函數(shù),求的最小值;
(Ⅱ)若函數(shù)(, 為自然對數(shù)的底數(shù)),,對于任意的,恒有成立,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對稱美,如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對稱統(tǒng)一的形式美、和諧美,給出定義:能夠?qū)A的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)”,給出下列命題:
①對于任意一個圓,其“優(yōu)美函數(shù)“有無數(shù)個”;
②函數(shù)可以是某個圓的“優(yōu)美函數(shù)”;
③正弦函數(shù)可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;
④函數(shù)是“優(yōu)美函數(shù)”的充要條件為函數(shù)的圖象是中心對稱圖形.
其中正確的命題是:( )
A. ①③ B. ①③④ C. ②③ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)市場調(diào)查,新街口某新開業(yè)的商場在過去一個月內(nèi)(以30天計),顧客人數(shù)(千人)與時間(天)的函數(shù)關(guān)系近似滿足(),人均消費(元)與時間(天)的函數(shù)關(guān)系近似滿足
(1)求該商場的日收益(千元)與時間(天)(, )的函數(shù)關(guān)系式;
(2)求該商場日收益的最小值(千元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為2,離心率為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點作圓的切線,切點分別為,直線與軸交于點,過點作直線交橢圓于兩點,點關(guān)于軸的對稱點為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信是騰訊公司推出的一種手機通訊軟件,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各50名,其中每天玩微信超過6小時的用戶為“A組”,否則為“B組”,調(diào)查結(jié)果如下:
A組 | B組 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“A組”用戶與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人贈送營養(yǎng)面膜1份,求所抽取5人中“A組”和“B組”的人數(shù);
(3)從(2)中抽取的5人中再隨機抽取2人贈送200元的護膚品套裝,求這2人中至少有1人在“A組”的概率.
參考公式:K2=,其中n=a+b+c+d為樣本容量.
參考數(shù)據(jù):
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行了以“重溫時代經(jīng)典,唱響回聲嘹亮”為主題的“紅歌”歌詠比賽. 該校高一年級有1,2,3,4四個班參加了比賽,其中有兩個班獲獎. 比賽結(jié)果揭曉之前,甲同學(xué)說:“兩個獲獎班級在2班、3班、4班中”,乙同學(xué)說:“2班沒有獲獎,3班獲獎了”,丙同學(xué)說:“1班、4班中有且只有一個班獲獎”,丁同學(xué)說:“乙說得對”. 已知這四人中有且只有兩人的說法是正確的,則這兩人是
A. 乙,丁 B. 甲,丙 C. 甲,丁 D. 乙,丙
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點為曲線上任意一點,且到定點的距離比到軸的距離多1.
(1)求曲線的方程;
(2)點為曲線上一點,過點分別作傾斜角互補的直線, 與曲線分別交于, 兩點,過點且與垂直的直線與曲線交于, 兩點,若,求點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com