已知f(x)=,若f(x)=10,則x=   
【答案】分析:當x≤10時,由 x2+1=10,求得 x 的值,當x>0時,由2x=10,求得 x 的值.
解答:解:當x≤10時,由 x2+1=10,x=-3.  當x>0時,由2x=10,得 x=5,
故答案為:-3或5.
點評:本題考查利用分段函數(shù)求函數(shù)的值,體現(xiàn)了分類討論的數(shù)學思想,分類討論是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f'(x)是f(x)的導(dǎo)數(shù),記f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),給出下列四個結(jié)論:
①若f(x)=xn,則f(5)(1)=120;
②若f(x)=cosx,則f(4)(x)=f(x);
③若f(x)=ex,則f(n)(x)=f(x)(n∈N+);
④設(shè)f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定義域上的可導(dǎo)函數(shù),h(x)=f(x)•g(x),則h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
則結(jié)論正確的是
①②③
①②③
(多填、少填、錯填均得零分).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=xα,若f'(-1)=-4,則α的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-alnx,x∈(1,2),
(1)判斷函數(shù)f(x)的單調(diào)性;
(2)若f(x)在(1,2)為增函數(shù),g(x)=x-a
x
在(0,1)上為減函數(shù).
求證:方程f(x)=g(x)+2在(0,+∞)內(nèi)有唯一解;
(3)當b>-1時,若f(x)≥2bx-
1
x2
在x∈(0,1)內(nèi)恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學公式上的值域為數(shù)學公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學第一輪基礎(chǔ)知識訓練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案