在函數(shù)y=|x|(x∈[-1,1])的圖象上有一點(diǎn)P(t,|t|),此函數(shù)與x軸、直線x=-1及x=t圍成圖形(如圖陰影部分)的面積為S,則S與t的函數(shù)關(guān)系圖可表示為( )

A.
B.
C.
D.
【答案】分析:利用在y軸的右側(cè),S的增長(zhǎng)會(huì)越來(lái)越快,切線斜率會(huì)逐漸增大,從而選出正確的選項(xiàng).
解答:解:由題意知,當(dāng)t>0時(shí),S的增長(zhǎng)會(huì)越來(lái)越快,
故函數(shù)S圖象在y軸的右側(cè)的切線斜率會(huì)逐漸增大,
故選B.
點(diǎn)評(píng):本題考查函數(shù)圖象的變化特征,函數(shù)的增長(zhǎng)速度與圖象的切線斜率的關(guān)系,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•黃埔區(qū)一模)對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“類P數(shù)對(duì)”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(1)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“類P數(shù)對(duì)”,試比較下列各組中兩個(gè)式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•順義區(qū)二模)對(duì)于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:
函數(shù)h(x)=
f(x)•g(x),當(dāng)x∈M且x∈N
f(x),當(dāng)x∈M且x∉N
g(x),當(dāng)x∉M且x∈N

(1)若函數(shù)f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函數(shù)h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,設(shè)bn為曲線y=h(x)在點(diǎn)(an,h(an))處切線的斜率;而{an}是等差數(shù)列,公差為1(n∈N*),點(diǎn)P1為直線l:2x-y+2=0與x軸的交點(diǎn),點(diǎn)Pn的坐標(biāo)為(an,bn).求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請(qǐng)問,是否存在一個(gè)定義域?yàn)镽的函數(shù)y=f(x)及一個(gè)α的值,使得h(x)=cosx,若存在請(qǐng)寫出一個(gè)f(x)的解析式及一個(gè)α的值,若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:黃埔區(qū)一模 題型:解答題

對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“類P數(shù)對(duì)”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(1)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“類P數(shù)對(duì)”,試比較下列各組中兩個(gè)式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省株洲二中高三(下)第十一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“類P數(shù)對(duì)”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(1)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“類P數(shù)對(duì)”,試比較下列各組中兩個(gè)式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年上海市黃浦區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“類P數(shù)對(duì)”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(1)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“類P數(shù)對(duì)”,試比較下列各組中兩個(gè)式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

同步練習(xí)冊(cè)答案