2.“不等式x2-5x-6<0成立”是“0<log2(x+1)<2成立”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 解不等式求出x的范圍,根據(jù)集合的包含關(guān)系以及充分必要條件的定義判斷即可.

解答 解:不等式x2-5x-6<0成立,
解得:-1<x<6;
0<log2(x+1)<2成立,
解得:1<x+1<4,即0<x<3,
故“不等式x2-5x-6<0成立”是“0<log2(x+1)<2成立”的必要不充分條件,
故選:B.

點(diǎn)評(píng) 本題考查了充分必要條件,考查集合的包含關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二次函數(shù)y=f(x)的圖象經(jīng)過坐標(biāo)原點(diǎn),其導(dǎo)數(shù)為f′(x)=2x+1,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{3}{{a}_{n}{a}_{n+1}}$,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn<$\frac{m}{16}$對(duì)所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,$\frac{{S}_{n+1}}{n+1}$-$\frac{{S}_{n}}{n}$=$\frac{n+c}{n+1}$(c∈R,n=1,2,3,…),且S1,$\frac{{S}_{2}}{2}$,$\frac{{S}_{3}}{3}$成等差數(shù)列.
(1)求c的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.向量$\overrightarrow{a}$=(1,1),$\overrightarrow$=(2,t),若$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù)t的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)y=mlnx(m>0)的圖象與函數(shù)y=e${\;}^{\frac{x}{m}}$的圖象有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍為( 。
A.(1,$\sqrt{e}$)B.($\sqrt{e}$,e)C.(e,+∞)D.($\sqrt{e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)A={x|x≤1或x≥3},B={x|a≤x≤a+1},A∩B=∅,則a的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x,a∈R.
(1)當(dāng)a=-1時(shí),求f(x)的單調(diào)區(qū)間,
(2)若函數(shù)f(x)在(2,+∞)上為單調(diào)遞增函數(shù),求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)直線l的方程為(a-1)x+y+a+3=0,(a∈R).
(1)若直線l在兩坐標(biāo)軸上截距的絕對(duì)值相等,求直線l的方程;
(2)若直線l不經(jīng)過第一象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線與圓(x-$\sqrt{3}$)2+y2=2相切,則雙曲線的離心率為( 。
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案