(I)若不等式|2x-a|+a≤6的解集為{x|-2≤x≤3},求實數(shù)a的值;
(II)若不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)恒成立,求實數(shù)x的取值范圍.
【答案】分析:(I) 由題意可得 得|2x-a|≤6-a,故a-3≤x≤3,再結(jié)合解集為{x|-2≤x≤3}可得 a-3=-2,由此求得a的值.
(II)由題意可得|4a|≥|a|(|2+x|+|2-x|)恒成立.顯然a=0滿足條件,a≠0時,有4≥|2+x|+|2-x|.再由|2+x|+|2-x|≥|2+x+2-x|=4,可得|2+x|+|2-x|=4,從而得到實數(shù)x的取值范圍.
解答:解:(I) 由|2x-a|+a≤6得|2x-a|≤6-a,
∴a-6≤2x-a≤6-a,解得a-3≤x≤3,
由題意可得 a-3=-2,即a=1.(5分)
(II)由絕對值不等式的性質(zhì)可得|2a+b|+|2a-b|≥|2a+b+2a-b|=|4a|,
∴|4a|≥|a|(|2+x|+|2-x|).
當(dāng)a=0時,上式恒成立,故x∈R.
當(dāng)a≠0時,消去|a|有4≥|2+x|+|2-x|.
又∵|2+x|+|2-x|≥|2+x+2-x|=4,
∴|2+x|+|2-x|=4,∴-2≤x≤2.
當(dāng)a=0時,解集為R;當(dāng)a≠0時,解集為{x|-2≤x≤2}. (10分)
點評:本題主要考查絕對值的意義,絕對值不等式的性質(zhì)和解法,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.