雙曲線(xiàn)x y = 1的焦點(diǎn)坐標(biāo)是          ,準(zhǔn)線(xiàn)方程是          。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論:
①當(dāng)a為任意實(shí)數(shù)時(shí),直線(xiàn)(a-1)x-y+2a+1=0恒過(guò)定點(diǎn)P,則過(guò)點(diǎn)P且焦點(diǎn)在y軸上的拋物線(xiàn)的標(biāo)準(zhǔn)方程是x2=
4
3
y

②已知雙曲線(xiàn)的右焦點(diǎn)為(5,0),一條漸近線(xiàn)方程為2x-y=0,則雙曲線(xiàn)的標(biāo)準(zhǔn)方程是
x2
5
-
y2
20
=1
;
③拋物線(xiàn)y=ax2(a≠0)的準(zhǔn)線(xiàn)方程為y=-
1
4a

④已知雙曲線(xiàn)
x2
4
+
y2
m
=1
,其離心率e∈(1,2),則m的取值范圍是(-12,0).
其中所有正確結(jié)論的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)結(jié)論:
①當(dāng)a為任意實(shí)數(shù)時(shí),直線(xiàn)(a-1)x-y+2a+1=0恒過(guò)定點(diǎn)P,則過(guò)點(diǎn)P且焦點(diǎn)在y軸上的拋物線(xiàn)的標(biāo)準(zhǔn)方程是x2=
4
3
y

②已知雙曲線(xiàn)的右焦點(diǎn)為(5,0),一條漸近線(xiàn)方程為2x-y=0,則雙曲線(xiàn)的標(biāo)準(zhǔn)方程是
x2
5
-
y2
20
=1

③拋物線(xiàn)y=ax2(a≠0)的準(zhǔn)線(xiàn)方程為y=-
1
4a
;
④已知雙曲線(xiàn)
x2
4
+
y2
m
=1
,其離心率e∈(1,2),則m的取值范圍是(-12,0).
其中所有正確結(jié)論的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題,其中所有正確命題的序號(hào)為
①②
①②

①當(dāng)a為任意實(shí)數(shù)時(shí),直線(xiàn)(a-1)x-y+2a+1=0恒過(guò)定點(diǎn)P(-2,3);
②已知雙曲線(xiàn)的右焦點(diǎn)為(5,0),一條漸近線(xiàn)方程為2x-y=0,則雙曲線(xiàn)的標(biāo)準(zhǔn)方程是
x2
5
-
y2
20
=1

③拋物線(xiàn)y=ax2(a≠0)的焦點(diǎn)坐標(biāo)為(
1
4a
,0
);
④曲線(xiàn)C:
x2
4-k
+
y2
k-1
=1
不可能表示橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)結(jié)論:
①若α、β為銳角,tan(α+β)=-3,tanβ=
1
2
,則α+2β=
4
;
②在△ABC中,若
AB
BC
>0
,則△ABC一定是鈍角三角形;
③已知雙曲線(xiàn)
x2
4
+
y2
m
=1
,其離心率e∈(1,2),則m的取值范圍是(-12,0);
④當(dāng)a為任意實(shí)數(shù)時(shí),直線(xiàn)(a-1)x-y+2a+1=0恒過(guò)定點(diǎn)P,則焦點(diǎn)在y軸上且過(guò)點(diǎn)P的拋物線(xiàn)的標(biāo)準(zhǔn)方程是x2=
4
3
y
.其中所有正確結(jié)論的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年高三(上)數(shù)學(xué)寒假作業(yè)10(圓錐曲線(xiàn))(解析版) 題型:填空題

下列結(jié)論:
①當(dāng)a為任意實(shí)數(shù)時(shí),直線(xiàn)(a-1)x-y+2a+1=0恒過(guò)定點(diǎn)P,則過(guò)點(diǎn)P且焦點(diǎn)在y軸上的拋物線(xiàn)的標(biāo)準(zhǔn)方程是
②已知雙曲線(xiàn)的右焦點(diǎn)為(5,0),一條漸近線(xiàn)方程為2x-y=0,則雙曲線(xiàn)的標(biāo)準(zhǔn)方程是;
③拋物線(xiàn)y=ax2(a≠0)的準(zhǔn)線(xiàn)方程為;
④已知雙曲線(xiàn),其離心率e∈(1,2),則m的取值范圍是(-12,0).
其中所有正確結(jié)論的個(gè)數(shù)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案