設(shè)是定義在上的函數(shù),若存在,使得在上單調(diào)遞增,在上單調(diào)遞減,則稱為上的單峰函數(shù),為峰點(diǎn),包含峰點(diǎn)的區(qū)間為含峰區(qū)間. 對(duì)任意的上的單峰函數(shù),下面研究縮短其含峰區(qū)間長(zhǎng)度的方法.
(1)證明:對(duì)任意的,,若,則為含峰區(qū)間;若,則為含峰區(qū)間;
(2)對(duì)給定的,證明:存在,滿足,使得由(1)所確定的含峰區(qū)間的長(zhǎng)度不大于;
證明見(jiàn)解析
(1)證明:設(shè)為的峰點(diǎn),則由單峰函數(shù)定義可知, 在上單調(diào)遞增, 在上單調(diào)遞減,
當(dāng)時(shí),假設(shè),則<,從而這與矛盾,所以,即為含峰區(qū)間.
當(dāng)時(shí),假設(shè),則,從而這與矛盾,所以,即為含峰區(qū)間………………………….(7分)
(2)證明:由(1)的結(jié)論可知:
當(dāng)時(shí), 含峰區(qū)間的長(zhǎng)度為;
當(dāng)時(shí), 含峰區(qū)間的長(zhǎng)度為;
對(duì)于上述兩種情況,由題意得 ①
由①得即,
又因?yàn)?img width=79 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/140/282940.gif">,所以 ②
將②代入①得 ③
由①和③解得
所以這時(shí)含峰區(qū)間的長(zhǎng)度,
即存在使得所確定的含峰區(qū)間的長(zhǎng)度不大于
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015屆河南靈寶三中高一上第三質(zhì)檢數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)是定義在上的函數(shù),且,當(dāng)時(shí),,那么當(dāng)時(shí),= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西南昌10所省高三第二次模擬突破沖刺理科數(shù)學(xué)(一)(解析版) 題型:填空題
若函數(shù)在給定區(qū)間M上存在正數(shù)t,使得對(duì)于任意,有,且,則稱為M上的t級(jí)類增函數(shù)。給出4個(gè)命題
①函數(shù)上的3級(jí)類增函數(shù)
②函數(shù)上的1級(jí)類增函數(shù)
③若函數(shù)上的級(jí)類增函數(shù),則實(shí)數(shù)a的最小值為2
④設(shè)是定義在上的函數(shù),且滿足:1.對(duì)任意,恒有;2.對(duì)任意,恒有;3. 對(duì)任意,,若函數(shù)是上的t級(jí)類增函數(shù),則實(shí)數(shù)t的取值范圍為。
以上命題中為真命題的是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆重慶市高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)是定義在上的函數(shù),且對(duì)任意,當(dāng)時(shí),都有;
(1)當(dāng)時(shí),比較的大;
(2)解不等式;
(3)設(shè)且,求的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com