定義在(-1,1)上的函數(shù)f(x)滿足:①對任意x,y∈(-1,1)都有數(shù)學(xué)公式;②當(dāng)x∈(-1,0)時,f(x)>0.
(Ⅰ)判斷f(x)在(-1,1)上的奇偶性,并說明理由;
(Ⅱ)判斷函數(shù)f(x)在(0,1)上的單調(diào)性,并說明理由;
(Ⅲ)若________,試求數(shù)學(xué)公式的值.


分析:(1)判斷函數(shù)f(x)的奇偶性:①判斷函數(shù)定義域是否關(guān)于原點對稱,②判斷f(-x)與f(x)的關(guān)系.
(2)證明函數(shù)f(x)的單調(diào)性,利用定義,分五步①設(shè)元,②作差,③變形,④判號,⑤下結(jié)論.
(3)利用題中所給的等式,把要求的已知的相結(jié)合,逐步求出要求的值.
解答:(Ⅰ)令x=y=0?f(0)=0.
令y=-x,則f(x)+f(-x)=0?f(-x)=-f(x)?f(x)在(-1,1)上是奇函數(shù).
(Ⅱ)設(shè)0<x1<x2<1,則,
而x1-x2<0,0<x1x2<1?
>0.即 當(dāng)x1<x2時,f(x1)>f(x2).
∴f(x)在(0,1 )上單調(diào)遞減.
(Ⅲ)由于,
,

點評:本題考查了抽象函數(shù)的奇偶性,單調(diào)性,與具體函數(shù)的證明方法相同,做題一定要抓牢定義,特別是證明題,一切方法源根本,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+b
1+x2
是定義在(-1,1)上的奇函數(shù),且f(
1
2
)=
2
5
,
①求函數(shù)f(x)的解析式;
②判斷函數(shù)f(x)在(-1,1)上的單調(diào)性并用定義證明;
③解關(guān)于x的不等式f(log2x-1)+f(log2x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在(-1,1)上的奇函數(shù),當(dāng)x∈(0,1)時,f(x)=2x2-2x,求f(x)在(-1,1)上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若m、n∈[-1,1],m+n≠0,>0.

(1)證明f(x)在[-1,1]上是增函數(shù);

(2)解不等式f(x+)<f().

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省青島市即墨一中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

函數(shù)f(x)=是定義在(-1,1)的奇函數(shù),且f()=
(1)確定f(x)的解析式;
(2)判斷函數(shù)在(-1,1)上的單調(diào)性;
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年黑龍江省哈爾濱三中高一(上)段考數(shù)學(xué)試卷(解析版) 題型:解答題

函數(shù)f(x)=是定義在(-1,1)的奇函數(shù),且f()=
(1)確定f(x)的解析式;
(2)判斷函數(shù)在(-1,1)上的單調(diào)性;
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

同步練習(xí)冊答案