分析 (1)連結(jié)A1C,交A1C于點E,則點E是A1C及A1C的中點,由中位線定理可得DE∥A1B,再由線面平行的判定得答案;
(2)由已知可得∠C1DC即為平面ADC1與平面ABC所成的銳二面角的平面角,然后求解直角三角形求得平面ADC1與平面ABC所成的銳二面角的正切值.
解答 (1)證明:如圖,
連結(jié)A1C,交A1C于點E,則點E是A1C及A1C的中點,
連結(jié)DE,則DE∥A1B,∵DE?平面ADC1,A1B?平面ADC1,
∴A1B∥平面ADC1;
(2)解:∵三棱柱ABC-A1B1C1中是直三棱柱,
∴平面ADC⊥平面平面B1BCC1,
∵AB=AC,D是BC的中點,∴AD⊥BC,
∴AD⊥平面B1BCC1,從而AD⊥C1D,又AD⊥BC,
∴∠C1DC即為平面ADC1與平面ABC所成的銳二面角的平面角,
在Rt△ABC中,由AB=AC=1,求得CD=$\frac{\sqrt{2}}{2}$,
在Rt△C1CD中,∵C1C=2,∴$tan∠{C_1}DC=2\sqrt{2}$.
∴平面ADC1與平面ABC所成的銳二面角的正切值為$2\sqrt{2}$.
點評 本題考查直線與平面平行的判定,考查二面角的平面角的求法,考查空間想象能力和思維能力,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | E⊆F⊆G | B. | F⊆G⊆E | C. | G⊆E⊆F | D. | E⊆G⊆F |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60° | B. | 90° | C. | 30° | D. | 30°或90° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com