sin13°cos43°-cos13°sin43°的值為( )
A.
B.
C.
D.
【答案】分析:直接利用兩角差的正弦函數(shù),化簡已知表達式,求出函數(shù)值即可.
解答:解:sin13°cos43°-cos13°sin43°=sin(13°-43°)=-sin30°=-
故選A.
點評:本題是基礎(chǔ)題,考查兩角差的正弦函數(shù)的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省泉州市安溪八中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

計算sin43°cos13°-cos43°sin13°的結(jié)果等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省紹興市諸暨中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

計算:sin43°cos13°-sin13°cos43°的值等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年貴州省安順學(xué)院附中高三(上)第五次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù).
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos48°
(5)sin2(-25°)+cos255°-sin2(-25°)cos55°
(Ⅰ)試從上述五個式子中選擇一個,求出這個常數(shù)
(Ⅱ)根據(jù)(Ⅰ)的計算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省安慶市望江四中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù).
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos48°
(5)sin2(-25°)+cos255°-sin2(-25°)cos55°
(Ⅰ)試從上述五個式子中選擇一個,求出這個常數(shù)
(Ⅱ)根據(jù)(Ⅰ)的計算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省安慶市望江四中高三(上)第一次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù).
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos48°
(5)sin2(-25°)+cos255°-sin2(-25°)cos55°
(Ⅰ)試從上述五個式子中選擇一個,求出這個常數(shù)
(Ⅱ)根據(jù)(Ⅰ)的計算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案