【題目】如圖,在下列四個(gè)正方體中,為正方體的兩個(gè)頂點(diǎn),為所在棱的中點(diǎn),則在這四個(gè)正方體中,直接與平面不平行的是(

A. B.

C. D.

【答案】A

【解析】對(duì)于B,易知ABMQ,則直線AB∥平面MNQ;對(duì)于C,易知ABMQ,則直線AB∥平面MNQ;對(duì)于D,易知ABNQ,則直線AB∥平面MNQ.故排除B,C,D,選A.

點(diǎn)睛:本題主要考查線面平行的判定定理以及空間想象能力,屬容易題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個(gè)定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象與軸相切,

(Ⅰ)求證: ;

(Ⅱ)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)結(jié)論:
①若α、β為第一象限角,且α>β,則sinα>sinβ
②函數(shù)y=|sinx|與y=|tanx|的最小正周期相同
③函數(shù)f(x)=sin(x+ )在[﹣ , ]上是增函數(shù);
④若函數(shù)f(x)=asinx﹣bcosx的圖象的一條對(duì)稱軸為直線x= ,則a+b=0.
其中正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱的底面是邊長(zhǎng)為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長(zhǎng)是 的中點(diǎn).

(1)求證: 平面;

(2)求二面角的大。

(3)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答
(1)已知tanα=3,求 的值;
(2)已知α為第二象限角,化簡(jiǎn)cosα +sinα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱柱中,底面,底面是梯形,,,.

(1)求證:平面平面;

(2)在線段上是否存在一點(diǎn),使平面,若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(x1 , f(x1)),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ) 圖象上的任意兩點(diǎn),且角φ的終邊經(jīng)過(guò)點(diǎn) ,若|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng) 時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,焦點(diǎn)為,點(diǎn)在拋物線上,且的距離比到直線的距離小1.

(1)求拋物線的方程;

(2)若點(diǎn)為直線上的任意一點(diǎn),過(guò)點(diǎn)作拋物線的切線,切點(diǎn)分別為,求證:直線恒過(guò)某一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 軸上的動(dòng)點(diǎn) 分別切圓 兩點(diǎn).

(1) ,求切線 的方程;

(2),求直線 的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案