【題目】已知是等差數(shù)列的前項和,且.
(1)求;
(2)令,計算和,由此推測數(shù)列是等差數(shù)列還是等比數(shù)列,證明你的結(jié)論.
【答案】(1)an=-1+2(n-1)=2n-3.(2)b1=,b2=2,b3=8. {bn}是等比數(shù)列.
【解析】(1)因為
所以.
(2)因為,所以,
然后根據(jù)等比數(shù)列的定義證明(與n無關(guān)的常數(shù)即可)
(1)設(shè)數(shù)列{an}的公差為d,那么5a1+·5·4d=15. ………………(2分)
把a1=-1代入上式,得d=2.…………………………………(4分)
因此,an=-1+2(n-1)=2n-3.……………………(6分)
(2)根據(jù),得b1=,b2=2,b3=8.……………(8分)
由此推測{bn}是等比數(shù)列.…………………………(10分)
證明如下:
由(1)得,an+1-an=2,所以(常數(shù)),
科目:高中數(shù)學 來源: 題型:
【題目】《中國詩詞大會》(第二季)亮點頗多,十場比賽每場都有一首特別設(shè)計的開場詩詞在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.若《將進酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場的排法有( )
A. 288種 B. 144種 C. 720種 D. 360種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知O為坐標原點,橢圓C:的左、右焦點分別為F1,F2,右頂點為A,上頂點為B,若|OB|,|OF2|,|AB|成等比數(shù)列,橢圓C上的點到焦點F2的最短距離為.
(1)求橢圓C的標準方程;
(2)設(shè)T為直線x=-3上任意一點,過F1的直線交橢圓C于點P,Q,且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分別滿足下列條件的a,b的值:
(1)直線l1過點(-3,-1),并且直線l1與l2垂直;則a=____,b=_______
(2)直線l1與直線l2平行,并且直線l2在y軸上的截距為3.則a=____,b=_______
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當它醒來時,發(fā)現(xiàn)烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達了終點.用,分別表示烏龜和兔子所行的路程,為時間,則與故事情節(jié)相吻合的是( 。
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx﹣ ax2﹣bx
(1)當a=b= 時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當a=0,b=﹣1時,方程f(x)=mx在區(qū)間[1,e2]內(nèi)有唯一實數(shù)解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】黨的十九大報告指出,建設(shè)生態(tài)文明是中華民族永續(xù)發(fā)展的千年大計.而清潔能源的廣泛使用將為生態(tài)文明建設(shè)提供更有力的支撐.沼氣作為取之不盡、用之不竭的生物清潔能源,在保護綠水青山方面具有獨特功效.通過辦沼氣帶來的農(nóng)村“廁所革命”,對改善農(nóng)村人居環(huán)境等方面,起到立竿見影的效果.為了積極響應(yīng)國家推行的“廁所革命”,某農(nóng)戶準備建造一個深為2米,容積為32立方米的長方體沼氣池,如果池底每平方米的造價為150元,池壁每平方米的造價為120元,沼氣池蓋子的造價為3000元,問怎樣設(shè)計沼氣池能使總造價最低?最低總造價是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com