7.某程序框圖如圖所示,該程序運(yùn)行后若輸出S的值是2,則判斷框內(nèi)可填寫( 。
A.i≤2015?B.i≤2016?C.i≤2017?D.i≤2018?

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)計(jì)算并輸出S值.模擬程序的運(yùn)行過程,用表格對(duì)程序運(yùn)行過程中各變量的值進(jìn)行分析,不難得到最終的輸出結(jié)果.

解答 解:程序在運(yùn)行過程中各變量的值如下表示:
          是否繼續(xù)循環(huán)       S     i
循環(huán)前/2     1
第一圈      是-3    2
第二圈      是-$\frac{1}{2}$   3
第三圈      是               $\frac{1}{3}$    4
第四圈      是                2    5
第五圈      是-3   6

依此類推,S的值呈周期性變化:2,-3,-$\frac{1}{2}$,$\frac{1}{3}$,2,-3,…
第2016圈    是            $\frac{1}{3}$     2017
第2017圈    是            2    2018
故選C.

點(diǎn)評(píng) 本題考查循環(huán)結(jié)構(gòu)的程序框圖,解決本題的關(guān)鍵是弄清開始和結(jié)束循環(huán)的條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知兩定點(diǎn)F1(-2,0),F(xiàn)2(2,0),曲線C上的動(dòng)點(diǎn)M滿足|MF1|+|MF2|=8,直線MF2與曲線C的另一個(gè)交點(diǎn)為P.
(Ⅰ)求曲線C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)N(-4,0),若S${\;}_{△MN{F}_{2}}$:S${\;}_{△PN{F}_{2}}$=3:2,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,D為三角形所在平面內(nèi)一點(diǎn),且$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$,則$\frac{{{S_{△ABD}}}}{{{S_{△ABC}}}}$=( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$不共線,且兩兩所成的角相等,若|$\overrightarrow{a}$|=|$\overrightarrow$|=2,|$\overrightarrow{c}$|=1,則|$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$|=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-2|+2,g(x)=m|x|(m∈R).
(Ⅰ)解關(guān)于x的不等式f(x)>5;
(Ⅱ)若不等式f(x)≥g(x)對(duì)任意x∈R恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若直線ax-y-a+3=0將關(guān)于x,y的不等式組$\left\{\begin{array}{l}{x-2y+5≥0}\\{x+y-1≥0}\\{x-y+1≤0}\end{array}\right.$表示的平面區(qū)域分成面積相等的兩部分,則z=4x-ay的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.關(guān)于曲線C:x2+y4=1,給出下列四個(gè)命題:①曲線C有兩條對(duì)稱軸,一個(gè)對(duì)稱中心;
②曲線C上的點(diǎn)到原點(diǎn)距離的最小值為1;③曲線C的長度l滿足l>4$\sqrt{2}$;④曲線C所圍成圖形的面積S滿足π<S<4.
上述命題中,真命題的個(gè)數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:解答題

已知集合,分別求適合下列條件的的值.

(1) ;

(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的漸近線方程為y=±$\frac{1}{2}$x,則雙曲線C的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{6}}{2}$D.$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案