如圖,M是半徑為R的圓周上一個(gè)定點(diǎn),在圓周上等可能地任取一點(diǎn)N,連接MN,則弦MN的長(zhǎng)度超過(guò)R的概率是   
【答案】分析:本題考查的知識(shí)點(diǎn)是幾何概型的意義,關(guān)鍵是要找出滿(mǎn)足條件弦MN的長(zhǎng)度超過(guò)R的圖形測(cè)度,再代入幾何概型計(jì)算公式求解.
解答:解:本題利用幾何概型求解.測(cè)度是弧長(zhǎng).
根據(jù)題意可得,滿(mǎn)足條件:“弦MN的長(zhǎng)度超過(guò)R”對(duì)應(yīng)的弧,
其構(gòu)成的區(qū)域是半圓,
則弦MN的長(zhǎng)度超過(guò)R的概率是P=
故答案為:
點(diǎn)評(píng):幾何概型的概率估算公式中的“幾何度量”,可以為線(xiàn)段長(zhǎng)度、面積、體積等,而且這個(gè)“幾何度量”只與“大小”有關(guān),而與形狀和位置無(wú)關(guān).解決的步驟均為:求出滿(mǎn)足條件A的基本事件對(duì)應(yīng)的“幾何度量”N(A),再求出總的基本事件對(duì)應(yīng)的“幾何度量”N,最后根據(jù)P=求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,M是半徑為R的圓周上一個(gè)定點(diǎn),在圓周上等可能地任取一點(diǎn)N,連接MN,則弦MN的長(zhǎng)度超過(guò)
2
R的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年高三(上)數(shù)學(xué)寒假作業(yè)(文科)(解析版) 題型:填空題

如圖,M是半徑為R的圓周上一個(gè)定點(diǎn),在圓周上等可能地任取一點(diǎn)N,連接MN,則弦MN的長(zhǎng)度超過(guò)R的概率是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年高三(上)數(shù)學(xué)寒假作業(yè)01(集合、邏輯、概率統(tǒng)計(jì)、復(fù)數(shù)、推理證明)(解析版) 題型:填空題

如圖,M是半徑為R的圓周上一個(gè)定點(diǎn),在圓周上等可能地任取一點(diǎn)N,連接MN,則弦MN的長(zhǎng)度超過(guò)R的概率是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年福建省高考數(shù)學(xué)一輪復(fù)習(xí):11.2 概率的應(yīng)用(解析版) 題型:解答題

如圖,M是半徑為R的圓周上一個(gè)定點(diǎn),在圓周上等可能地任取一點(diǎn)N,連接MN,則弦MN的長(zhǎng)度超過(guò)R的概率是   

查看答案和解析>>

同步練習(xí)冊(cè)答案