已知{an}為無窮等差數(shù)列,若
a8
a7
<-1且它的前n項和Sn有最大值,那么當(dāng)Sn
取得最大負(fù)值時,n=( 。
A、12B、13C、14D、15
分析:根據(jù)由
a8
a7
<-1
,判定a7>0,a7+a8<0,進(jìn)而根據(jù)等差數(shù)列的求和公式判定S13>0,S14<0得出答案.
解答:解:等差數(shù)列{an}中,由
a8
a7
<-1
,且它們的前n項和Sn有最大值,
所以a7>0,a7+a8<0,所以S13>0,S14<0,
故選C.
點(diǎn)評:{an}為等差數(shù)列,若它的前n項和Sn有最小值,則數(shù)列的公差d小于0;{an}為等差數(shù)列,若它的前n項和Sn有最大值,則數(shù)列的公差d大于0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•普陀區(qū)一模)定義:將一個數(shù)列中部分項按原來的先后次序排列所成的一個新數(shù)列稱為原數(shù)列的一個子數(shù)列.
已知無窮等比數(shù)列{an}的首項、公比均為
1
2

(1)試求無窮等比子數(shù)列{a3k-1}(k∈N*)各項的和;
(2)是否存在數(shù)列{an}的一個無窮等比子數(shù)列,使得它各項的和為
1
7
?若存在,求出滿足條件的子數(shù)列的通項公式;若不存在,請說明理由;
(3)試設(shè)計一個數(shù)學(xué)問題,研究:是否存在數(shù)列{an}的兩個不同的無窮等比子數(shù)列,使得其各項和之間滿足某種關(guān)系.請寫出你的問題以及問題的研究過程和研究結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義:將一個數(shù)列中部分項按原來的先后次序排列所成的一個新數(shù)列稱為原數(shù)列的一個子數(shù)列.
已知無窮等比數(shù)列{an}的首項、公比均為數(shù)學(xué)公式
(1)試求無窮等比子數(shù)列{a3k-1}(k∈N*)各項的和;
(2)是否存在數(shù)列{an}的一個無窮等比子數(shù)列,使得它各項的和為數(shù)學(xué)公式?若存在,求出滿足條件的子數(shù)列的通項公式;若不存在,請說明理由;
(3)試設(shè)計一個數(shù)學(xué)問題,研究:是否存在數(shù)列{an}的兩個不同的無窮等比子數(shù)列,使得其各項和之間滿足某種關(guān)系.請寫出你的問題以及問題的研究過程和研究結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:普陀區(qū)一模 題型:解答題

定義:將一個數(shù)列中部分項按原來的先后次序排列所成的一個新數(shù)列稱為原數(shù)列的一個子數(shù)列.
已知無窮等比數(shù)列{an}的首項、公比均為
1
2

(1)試求無窮等比子數(shù)列{a3k-1}(k∈N*)各項的和;
(2)是否存在數(shù)列{an}的一個無窮等比子數(shù)列,使得它各項的和為
1
7
?若存在,求出滿足條件的子數(shù)列的通項公式;若不存在,請說明理由;
(3)試設(shè)計一個數(shù)學(xué)問題,研究:是否存在數(shù)列{an}的兩個不同的無窮等比子數(shù)列,使得其各項和之間滿足某種關(guān)系.請寫出你的問題以及問題的研究過程和研究結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年上海市普陀區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

定義:將一個數(shù)列中部分項按原來的先后次序排列所成的一個新數(shù)列稱為原數(shù)列的一個子數(shù)列.
已知無窮等比數(shù)列{an}的首項、公比均為
(1)試求無窮等比子數(shù)列{a3k-1}(k∈N*)各項的和;
(2)是否存在數(shù)列{an}的一個無窮等比子數(shù)列,使得它各項的和為?若存在,求出滿足條件的子數(shù)列的通項公式;若不存在,請說明理由;
(3)試設(shè)計一個數(shù)學(xué)問題,研究:是否存在數(shù)列{an}的兩個不同的無窮等比子數(shù)列,使得其各項和之間滿足某種關(guān)系.請寫出你的問題以及問題的研究過程和研究結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年上海市普陀區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

定義:將一個數(shù)列中部分項按原來的先后次序排列所成的一個新數(shù)列稱為原數(shù)列的一個子數(shù)列.
已知無窮等比數(shù)列{an}的首項、公比均為
(1)試求無窮等比子數(shù)列{a3k-1}(k∈N*)各項的和;
(2)是否存在數(shù)列{an}的一個無窮等比子數(shù)列,使得它各項的和為?若存在,求出滿足條件的子數(shù)列的通項公式;若不存在,請說明理由;
(3)試設(shè)計一個數(shù)學(xué)問題,研究:是否存在數(shù)列{an}的兩個不同的無窮等比子數(shù)列,使得其各項和之間滿足某種關(guān)系.請寫出你的問題以及問題的研究過程和研究結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案