5.若α是第四象限角,cosα=$\frac{12}{13}$,則sinα=(  )
A.-$\frac{5}{13}$B.$\frac{5}{13}$C.-$\frac{5}{12}$D.$\frac{5}{12}$

分析 利用同角三角函數(shù)的基本關(guān)系、以及三角函數(shù)在各個(gè)象限中的符號(hào),求得sinα的值.

解答 解:α是第四象限角,cosα=$\frac{12}{13}$,則sinα=-$\sqrt{{1-cos}^{2}α}$=-$\frac{5}{13}$,
故選:A.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系、以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若f1(x)=sinx,f2(x)=f1′(x),f3(x)=f2′(x),…fk+1(x)=fk′(x),則f2007($\frac{π}{3}$),( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若橢圓$\frac{{x}^{2}}{6}$$+\frac{{y}^{2}}{4}$=1的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,P是橢圓上一點(diǎn),若PF1⊥PF2,則△PF1F2的面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知全集U=R,集合M={x|(x-1)(x+2)≥0},N={x|-1≤x≤2},則(∁M)∩N=( 。
A.[-2,-1]B.[-1,2]C.[-1,1)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象如圖所示,為了得到g(x)=Acosωx的圖象,可以將f(x)的圖象( 。
A.向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度B.向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度
C.向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度D.向右平移$\frac{5π}{12}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S6>S7>S5,則滿足Sn>0的n的最大值為( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知等比數(shù)列{an}滿足,a2=3,a5=81.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3an,求{bn}的前n項(xiàng)和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,四棱錐P-ABCD中,底面ABCD為矩形,E為PD的中點(diǎn).
(1)求證:PB∥平面AEC;
(2)若PA⊥平面ABCD,PA=AD,求證:平面AEC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在正四面體P-ABC中,點(diǎn)M是棱PC的中點(diǎn),點(diǎn)N是線段AB上一動(dòng)點(diǎn),且$\overrightarrow{AN}=λ\overrightarrow{AB}$,設(shè)異面直線 NM 與 AC 所成角為α,當(dāng)$\frac{1}{3}≤λ≤\frac{2}{3}$時(shí),則cosα的取值范圍是[$\frac{5\sqrt{19}}{38}$,$\frac{7\sqrt{19}}{38}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案