精英家教網 > 高中數學 > 題目詳情
精英家教網如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中點.已知:PA=2,AB=2,BC=2
2

(1)求證:CD⊥PD;
(2)求異面直線AE與BC所成的角的大。
分析:(1)證明CD⊥平面PAD,可得CD⊥PD;
(2)取PB的中點F,連接AF、EF,△PBC中,利用中位線定理,得到EF∥BC,從而∠AEF或其補角就是異面直線BC與AE所成的角,然后可以通過計算證明出:△AEF是以F為直角頂點的等腰直角三角形,所以∠AEF=45°.
解答:精英家教網(1)證明:因為PA⊥底面ABCD,CD?底面ABCD,所以PA⊥CD.
又 AD⊥CD,PA∩AD=A,所以CD⊥平面PAD,
因為PD?平面PAD,所以CD⊥PD.
(2)解:如圖,取PB中點F,連結EF、AF,則EF∥BC,從而∠AEF(或其補角)是異面直線BC與AE所成的角.
在△AEF中,由EF=
2
,AF=
1
2
PB=
2

連結AC,因為PC=4,在Rt△PAC中,AE=
1
2
PC=2,所以EF2+AF2=AE2,
所以△AEF是等腰直角三角形,所以∠AEF=45°.
因此,異面直線AE與BC所成的角的大小是45°.
點評:本題考查異面直線及其所成的角和直線與平面垂直的性質等知識,考查學生分析轉化問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習冊答案