分析:利用復(fù)合函數(shù)的意義、遞推數(shù)列即可得出.
解答:解:(1)如圖所示,y=f
1(x),
已知f
2(x)=f
1(f
1(x))=0.
①當(dāng)
0≤x≤時,
0≤-x≤,
f1(x)=-x,f
1(f
1(x))=
-f1(x)=0,解得x=0.
②當(dāng)
<x≤1時,f
1(x)=2x-1,當(dāng)
0≤2x-1≤時,即
≤x≤時,
f1(f1(x))=-f1(x)=-(2x-1)=0,解得
x=.
綜上①②可知:f
2(x)=0的解集為{
0,}.
(2)①當(dāng)
0≤x≤時,
f1(x)=-x,f
2(x)=f
1(f
1(x))=
-f1(x)=x,f
3(x)=f
1(f
2(x))=f
1(x),f
4(x)=f
1(f
3(x))f
1(f
1(x))=x,
f
5(x)=f
1(f
4(x))=f
1(x),因此f
5(x)=f
3(x)恒成立,故
0≤x≤.
②當(dāng)
<x≤1時,f
1(x)=2x-1,同①可得
<x≤,或x=1.
綜上可知:f
5(x)=f
3(x)的解集為{x|
0≤x≤,或x=1}.
故答案分別為{0,
},{x|
0≤x≤,或x=1}.
點評:正確理解復(fù)合函數(shù)的意義、遞推數(shù)列等是解題的關(guān)鍵.