若對任意x∈A,y∈B,(A、B⊆R)有唯一確定的f(x,y)與之對應(yīng),稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實數(shù)x、y的廣義“距離”:
(1)非負性:f(x,y)≥0,當且僅當x=y=0時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
今給出四個二元函數(shù):
①f(x,y)=x2+y2;②f(x,y)=(x-y)2f(x,y)=
x-y
;④f(x,y)=sin(x-y).
能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的所有序號是
分析:利用新定義的三個條件,若有一個不滿足,即不是“關(guān)于的x、y的廣義“距離”的函數(shù)”.
解答:解:①對于函數(shù)f(x,y)=x2+y2:滿足非負性:f(x,y)≥0,當且僅當x=y=0時取等號;滿足對稱性:f(x,y)=f(y,x);
∵f(x,z)+f(z,y)=x2+z2+z2+y2≥x2+y2=f(x,y)對任意的實數(shù)z均成立,因此滿足三角形不等式:f(x,y)≤f(x,z)+f(z,y).可知f(x,y)能夠成為關(guān)于的x、y的廣義“距離”的函數(shù).
②f(x,y)=(x-y)2≥0,但是不僅x=y=0時取等號,x=y≠0也成立,因此不滿足新定義:關(guān)于的x、y的廣義“距離”的函數(shù);
③f(x,y)=
x-y
,若f(x,y)=
x-y
成立,則f(y-x)=
y-x
不一定成立,即不滿足對稱性;
④同樣f(x,y)=sin(x-y)不滿足對稱性.
綜上可知:只有①滿足新定義,能夠成為關(guān)于的x、y的廣義“距離”的函數(shù).
故答案為①.
點評:本題考查了新定義、函數(shù)的性質(zhì)等基礎(chǔ)知識與基本技能方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若對任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實數(shù)x、y的廣義“距離”;
(1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
今給出三個二元函數(shù),請選出所有能夠成為關(guān)于x、y的廣義“距離”的序號:
①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③f(x,y)=
x-y

能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對應(yīng),則稱f(x,y)為關(guān)于x,y的二元函數(shù).
定義:滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實數(shù)x,y的廣義“距離”:
(1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
給出三個二元函數(shù):①f(x,y)=(x-y)2;②f(x,y)=|x-y|; ③f(x,y)=
x-y

請選出所有能夠成為關(guān)于x,y的廣義“距離”的序號

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對任意x∈A,y∈B,(A、B?R)有唯一確定的f(x,y)與之對應(yīng),稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實數(shù)x、y的廣義“距離”:
(1)非負性:f(x,y)≥0,當且僅當x=y=0時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
今給出四個二元函數(shù):①f(x,y)=x2+y2;②f(x,y)=(x-y)2;③f(x,y)=
x-y
;④f(x,y)=sin(x-y).
能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的所有序號是( 。
A、①B、②C、③D、④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省華南師大附中高三綜合測試數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

若對任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實數(shù)x、y的廣義“距離”;
(1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
今給出三個二元函數(shù),請選出所有能夠成為關(guān)于x、y的廣義“距離”的序號:
①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③
能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的序號是   

查看答案和解析>>

同步練習(xí)冊答案