sin(-750°)=   
【答案】分析:先根據(jù)正弦函數(shù)為奇函數(shù),即sin(-α)=-sinα把所求式子進(jìn)行化簡(jiǎn),然后把角度750°分為360°的2倍加上30°,運(yùn)用誘導(dǎo)公式sin(2k•360°+α)=sinα化簡(jiǎn)后,再根據(jù)特殊角的三角函數(shù)值即可求出原式的值.
解答:解:sin(-750°)
=-sin750°
=-sin(2×360°+30°)
=-sin30°=-
故答案為:-
點(diǎn)評(píng):此題考查了運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,要求學(xué)生掌握正弦函數(shù)的奇偶性及誘導(dǎo)公式,牢記特殊角的三角函數(shù)值,同時(shí)注意角度的靈活變換.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

sin(-750°)=(        )

A.-          B.          C.-        D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省淄博一中高一(下)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

sin(-750°)=( )
A.-
B.
C.-
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案