在平面直角坐標系xOy中,過原點O的直線與函數(shù)y=log8x的圖象交于A、B兩點(A在B的左側(cè)),分別過A、B作y軸的平行線分別與函數(shù)y=log2x的圖象交于C、D兩點,若BC∥x軸,則四邊形ABCD的面積為   
【答案】分析:設出A、B的坐標,求出OA、OB的斜率相等利用三點共線得出A、B的坐標之間的關系.再根據(jù)BC平行x軸,B、C縱坐標相等,推出橫坐標的關系,結(jié)合之前得出A、B的坐標之間的關系即可求出A的坐標,從而解出B、C、D的坐標,最后利用梯形的面積公式求解即可.
解答:解:設點A、B的橫坐標分別為x1、x2由題設知,x1>1,x2>1.
則點A、B縱坐標分別為log8x1、log8x2
因為A、B在過點O的直線上,所以 =,
點C、D坐標分別為(x1,log2x1),(x2,log2x2).
由于BC平行于x軸知
log2x1=log8x2
即得log2x1=log2x2,
∴x2=x13
代入x2log8x1=x1log8x2得x13log8x1=3x1log8x1
由于x1>1知log8x1≠0,
∴x13=3x1
考慮x1>1解得x1=
于是點A的坐標為(,log8)即A(, log23)
∴B(3,log23),C(,log23),D(3,log23).
∴梯形ABCD的面積為S=(AC+BD)×BC=log23+log23)×2=
故答案為:
點評:本小題主要考查對數(shù)函數(shù)圖象、對數(shù)換底公式、對數(shù)方程、指數(shù)方程等基礎知識,考查運算能力和分析問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標原點O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標是
3
5
,點B的縱坐標是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,若焦點在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•泰州三模)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設直線AC與BD的交點為P,求動點P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•東莞一模)在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案