已知正數(shù)x、y滿足數(shù)學公式,則z=22x+y的最大值為


  1. A.
    8
  2. B.
    16
  3. C.
    32
  4. D.
    64
B
分析:本題考查的知識點是簡單線性規(guī)劃的應用,我們要先畫出滿足約束條件的平面區(qū)域,然后分析平面區(qū)域里各個角點,然后將其代入2x+y中,即可求出z=22x+y的最大值.
解答:解:滿足約束條件的平面區(qū)域如下圖所示:
得A(1,2),
由圖可知:當x=1,y=2時z=22x+y的最大值為24=16,
故選B.
點評:在解決線性規(guī)劃的小題時,我們常用“角點法”,其步驟為:①由約束條件畫出可行域?②求出可行域各個角點的坐標?③將坐標逐一代入目標函數(shù)?④驗證,求出最優(yōu)解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知正數(shù)x,y滿足:x+2y=20,則xy的最大值為
50
50

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正數(shù)x、y滿足
2x-y≤0
x-3y+5≥0
,則z=22x+y的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉興一模)已知正數(shù)x,y滿足
1
x
+
2
y
=1
則xy的最小值是=
8
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正數(shù)x,y滿足
2x-y≤0
x-3y+5≥0
,則z=4-x•(
1
2
)y
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正數(shù)x,y滿足x+2y=3,當xy取得最大值時,過點P(x,y)引圓(x-
1
2
)2+(y+
1
4
)2=
1
2
的切線,則此切線段的長度為( 。

查看答案和解析>>

同步練習冊答案