△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且
m
=(
3
b-c,cosC),
n
=(a,cosA),若
m
n
,則cosA=( 。
A、-
2
2
B、
3
3
C、-
3
3
D、
2
2
分析:根據(jù)兩個(gè)向量平行的條件,寫(xiě)出坐標(biāo)形式的表達(dá)式,得到關(guān)于三角形角和邊的關(guān)系,再由正弦定理變化整理,逆用兩角和的正弦公式,得到角A的余弦值.
解答:解:∵
m
n

∴(
3
b-c)cosA-acosC=0,
再由正弦定理得
3
sinBcosA=sinCcosA+cosCsinA
3
sinBcosA=sin(C+A)=sinB,
即cosA=
3
3

故選C
點(diǎn)評(píng):通過(guò)向量的坐標(biāo)表示實(shí)現(xiàn)向量問(wèn)題代數(shù)化,注意與方程、函數(shù)等知識(shí)的聯(lián)系,一般的向量問(wèn)題的處理有兩種思路,一種是純向量式的,另一種是坐標(biāo)式,兩者互相補(bǔ)充.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)一模)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且asinB-bcosC=ccosB.
(Ⅰ)判斷△ABC的形狀;
(Ⅱ)若f(x)=
1
2
cos2x-
2
3
cosx+
1
2
,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•德州一模)已知函數(shù)f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函數(shù)f(x)的最小正周期及在區(qū)間[0,
12
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2
,面積S△ABC=3,求邊長(zhǎng)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•盧灣區(qū)一模)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且a=2bcosC,b+c=3a.求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•石景山區(qū)一模)在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大。
(Ⅱ)若A=
π4
,a=2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角△ABC中,角A、B、C所對(duì)的邊長(zhǎng)分別為a、b、c,向量
m
=(1,cosB),
n
=(sinB,-
3
)
,且
m
n

(1)求角B的大;
(2)若△ABC面積為
3
3
2
,3ac=25-b2,求a,c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案