已知函數(shù)

(Ⅰ)若函數(shù)y=f(x)的圖象切x軸于點(diǎn)(2,0),求a、b的值;       

(Ⅱ)設(shè)函數(shù)y=f(x) 的圖象上任意一點(diǎn)的切線斜率為k,試求的充要條件;

(Ⅲ)若函數(shù)y=f(x)的圖象上任意不同的兩點(diǎn)的連線的斜率小于1,求證。

(Ⅰ),   (Ⅱ) (Ⅲ)證明見解析


解析:

(Ⅰ)…………………………………………1分

, ………………………………………………2分

  ……………………………………………………3分

(Ⅱ)k=,

對(duì)任意的,即對(duì)任意的恒成立……4分

等價(jià)于對(duì)任意的恒成立。…………………………5分

令g(x)=,h(x)=,

 …………………………………………6分

,當(dāng)且僅當(dāng)時(shí)“=”成立,…………7分

h(x)=在(0,1)上為增函數(shù),h(x)max<2……………………………8分

         ……………………………………………………………………9分

(Ⅲ)設(shè)……10分

,對(duì)恒成立…………………………11分

,對(duì)恒成立

對(duì)恒成立…………………………13分

解得……………………………………………………14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-4ax+2a+6(a∈R).
(1)若函數(shù)的值域?yàn)閇0,+∞),求a的值;
(2)若函數(shù)值為非負(fù)數(shù),求函數(shù)f(a)=2-a|a+3|的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+
2
x
+alnx(x>0)
,
(Ⅰ) 若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)若定義在區(qū)間D上的函數(shù)y=f(x)對(duì)于區(qū)間D上的任意兩個(gè)值x1、x2總有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函 數(shù)”.試證當(dāng)a≤0時(shí),f(x)為“凹函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式,
(Ⅰ) 若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)若定義在區(qū)間D上的函數(shù)y=f(x)對(duì)于區(qū)間D上的任意兩個(gè)值x1、x2總有以下不等式數(shù)學(xué)公式成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函 數(shù)”.試證當(dāng)a≤0時(shí),f(x)為“凹函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年廣東省韶關(guān)市田家炳中學(xué)、乳源高級(jí)中學(xué)聯(lián)考高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù),
(Ⅰ) 若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)若定義在區(qū)間D上的函數(shù)y=f(x)對(duì)于區(qū)間D上的任意兩個(gè)值x1、x2總有以下不等式成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函 數(shù)”.試證當(dāng)a≤0時(shí),f(x)為“凹函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年廣東省華南師大附中高三綜合測(cè)試數(shù)學(xué)試卷3(理科)(解析版) 題型:解答題

已知函數(shù),
(Ⅰ) 若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)若定義在區(qū)間D上的函數(shù)y=f(x)對(duì)于區(qū)間D上的任意兩個(gè)值x1、x2總有以下不等式成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函 數(shù)”.試證當(dāng)a≤0時(shí),f(x)為“凹函數(shù)”.

查看答案和解析>>

同步練習(xí)冊(cè)答案