已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點為P(2,3),求過兩點Q1a1,b1)、

Q2a2,b2)(a1a2)的直線方程.

P(2,3)在已知直線上,

 

 
    2a1+3b1+1=0,

2a2+3b2+1=0.

∴2(a1a2)+3(b1b2)=0,即=-.

∴所求直線方程為yb1=-xa1).

∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0


解析:

利用點斜式或直線與方程的概念進行解答

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:訓練必修二數(shù)學蘇教版 蘇教版 題型:013

已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點為P(2,3),則過兩點Q1(a1,b1)、Q2(a2,b2)的直線方程是

[  ]

A.3x+2y=0

B.2x-3y+5=0

C.2x+3y+1=0

D.3x+2y+1=0

查看答案和解析>>

科目:高中數(shù)學 來源:設計必修二數(shù)學蘇教版 蘇教版 題型:013

已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點是P(2,3),則過兩點Q1(a1,b1)、Q2(a2,b2)的直線方程是

[  ]

A.3x-2y=0

B.2x-3y+5=0

C.2x+3y+1=0

D.3x+2y+1=0

查看答案和解析>>

科目:高中數(shù)學 來源:設計必修二數(shù)學北師版 北師版 題型:044

已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點為P(2,3),求過兩點A(a1,b1)、B(a2,b2)的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:設計必修二數(shù)學人教A版 人教A版 題型:044

已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點為P(2,3),求過兩點A(a1,b1)、B(a2,b2)的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點為P(2,3),求過兩點A(a1,b1)、B(a2,b2)的直線方程.

查看答案和解析>>

同步練習冊答案