如圖,已知圓的弦交半徑于點(diǎn).若,,且的中點(diǎn),則       

 

 

 

【答案】

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知圓E:x2+(y-1)2=4交x軸分別于A,B兩點(diǎn),交y軸的負(fù)半軸于點(diǎn)M,過(guò)點(diǎn)M作圓E的弦MN.
(1)若弦MN所在直線的斜率為2,求弦MN的長(zhǎng);
(2)若弦MN的中點(diǎn)恰好落在x軸上,求弦MN所在直線的方程;
(3)設(shè)弦MN上一點(diǎn)P(不含端點(diǎn))滿(mǎn)足PA,PO,PB成等比數(shù)列(其中O為坐標(biāo)原點(diǎn)),試探求
PA
PB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知半橢圓
x2
a2
+
y2
b2
=1(x≥0)
與半橢圓
y2
b2
+
x2
c2
=1(x≤0)
組成的曲線稱(chēng)為“果圓”,其中a2=b2+c2,a>0,b>c>0.如圖,設(shè)點(diǎn)F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點(diǎn),A1,A2和B1,B2是“果圓”與x,y軸的交點(diǎn),
(1)若三角形F0F1F2是邊長(zhǎng)為1的等邊三角形,求“果圓”的方程;
(2)若|A1A|>|B1B|,求
b
a
的取值范圍;
(3)一條直線與果圓交于兩點(diǎn),兩點(diǎn)的連線段稱(chēng)為果圓的弦.是否存在實(shí)數(shù)k,使得斜率為k的直線交果圓于兩點(diǎn),得到的弦的中點(diǎn)的軌跡方程落在某個(gè)橢圓上?若存在,求出所有k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省濰坊市2012屆高考考前適應(yīng)性訓(xùn)練(三模)數(shù)學(xué)文科試題 題型:044

如圖,已知半橢圓的離心率為曲線C2是以半橢圓C1的短軸為直徑的圓在y軸右側(cè)的部分,點(diǎn)P(x0,y0)是曲線C2上的任意一點(diǎn),過(guò)點(diǎn)P且與曲線C2相切的直線l與半橢圓C1交于兩個(gè)不同點(diǎn)A、B.

(Ⅰ)求直線l的方程(用x0,y0表示);

(Ⅱ)求弦|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省河西五市高三第二次(5月)聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N  (點(diǎn)M在點(diǎn)N的右側(cè)),且。橢圓D:的焦距等于,且過(guò)點(diǎn)

( I ) 求圓C和橢圓D的方程;

(Ⅱ) 若過(guò)點(diǎn)M的動(dòng)直線與橢圓D交于A、B兩點(diǎn),若點(diǎn)N在以弦AB為直徑的圓的外部,求直線斜率的范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年普通高等學(xué)校招生全國(guó)統(tǒng)一考試?yán)砜茢?shù)學(xué)卷(上海) 題型:解答題

已知半橢圓與半橢圓組成的曲線稱(chēng)為“果圓”,其中。如圖,設(shè)點(diǎn),,是相應(yīng)橢圓的焦點(diǎn),,是“果圓” 與軸的交點(diǎn),

(1)若三角形是邊長(zhǎng)為1的等邊三角形,求“果圓”的方程;

(2)若,求的取值范圍;

(3)一條直線與果圓交于兩點(diǎn),兩點(diǎn)的連線段稱(chēng)為果圓的弦。是否存在實(shí)數(shù),使得斜率為的直線交果圓于兩點(diǎn),得到的弦的中點(diǎn)的軌跡方程落在某個(gè)橢圓上?若存在,求出所有的值;若不存在,說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案