已知A,B,C三點(diǎn)的坐標(biāo)分別是A(3,0),B(0,3),C(cosθ,sinθ),其中
π
2
<θ<
2
,且|
AC
|=|
BC
|

(Ⅰ)求角θ的值;
(Ⅱ)當(dāng)0≤x≤
π
2
時(shí),求函數(shù)f(x)=2sin(2x+θ)的最大值和最小值.
分析:(Ⅰ)先求出
AC
 和
BC
的坐標(biāo),由|
AC
|=|
BC
|
,化簡可得sinθ=cosθ,再由θ的范圍求出θ的值.
(Ⅱ)根據(jù)x的范圍求得2x+θ的范圍,再由正弦函數(shù)的定義域和值域求出函數(shù)f(x)=2sin(2x+θ)的最大值和最小值.
解答:解:(Ⅰ)
AC
=(cosθ-3,sinθ),
BC
=(cosθ,sinθ-3). …(2分)
|
AC
|=|
BC
|
,
(cosθ-3)2+sin2θ
=
cos2θ+(sinθ-3)2
,
化簡得:sinθ=cosθ. …(5分)
π
2
<θ<
2
,∴θ=
π
2
. …(7分)
(Ⅱ)當(dāng)0≤x≤
π
2
時(shí),
4
≤2x+θ≤
4
,
-1≤sin(2x+θ)≤
2
2
,…(10分)
∴f(x)max=
2
,f(x)min=-2.…(12分)
點(diǎn)評(píng):本題主要考查正弦函數(shù)的定義域和值域,三角函數(shù)的恒等變換及化簡求值,求向量的模,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C三點(diǎn)的坐標(biāo)分別是A(3,0),B(0,3),C(cosα,sinα),α∈(
π
2
2
)
,若
AC
BC
=-1
,則
1+tanα
2sin2α+sin2α
的值為( 。
A、-
5
9
B、-
9
5
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C三點(diǎn)的坐標(biāo)分別為A(3,0)、B(3,0)、C(cosα,sinα)且
AC
BC
=-
1
2
.求:
(Ⅰ)sinα+cosα的值;
(Ⅱ)
sin(π-4α)•cos2(π-α)
1+sin(
π
2
+4α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C三點(diǎn)的坐標(biāo)分別為A(0,1),B(2,2),C(3,5),則cosA=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C三點(diǎn)的坐標(biāo)分別是A(0,
3
2
)
,B(0,3),C(cosθ,sinθ),其中
π
2
<θ<
2
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)當(dāng)0≤x≤
π
2
時(shí),求函數(shù)f(x)=2sin(2x+θ)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C三點(diǎn)的坐標(biāo)分別為(1,1)、(3,2)、(2,k+1),若△ABC為等腰三角形,求k的值.

查看答案和解析>>

同步練習(xí)冊答案