精英家教網 > 高中數學 > 題目詳情
17.在正四棱柱ABCD-A1B1C1D1中,AB=AD=2,AA1=4,則正四棱柱的外接球的表面積為24π.

分析 根據正四棱柱的各頂點均在同一球的球面上,則正四棱柱的體對角線等于球的直徑,然后求出球的半徑,進而可求球的表面積.

解答 解:∵正四棱柱的各頂點均在同一球的球面上,
∴正四棱柱的體對角線等于球的直徑,
∵正四棱柱ABCD-A1B1C1D1中,AB=AD=2,AA1=4,
∴正四棱柱ABCD-A1B1C1D1的體對角線l=$\sqrt{4+4+16}$=2$\sqrt{6}$,
∴球的直徑2r=2$\sqrt{6}$,
即球的半徑r=$\sqrt{6}$,
∴球的表面積為4πr2=24π,
故答案為24π.

點評 本題主要考查球的表面積公式,以及球內接長方體的關系,要求熟練掌握長方體的體對角線和球直徑之間的關系是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

7.已知關于x的一元二次方程x2-2ax+b2=0,其中a,b∈R.若a隨機選自區(qū)間[0,4],b隨機選自區(qū)間[0,3],求方程有實根的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.設函數f(x)=sin(x+φ)(0<φ<$\frac{π}{2}$),y=f(x)圖象的一條對稱軸是直線x=$\frac{π}{4}$.
(1)求φ;
(2)求函數y=f(x)的單調增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.角-2015°是( 。
A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.設x=1與x=3是函數f(x)=alnx+bx2+x的兩個極值點.
(1)試確定常數a和b的值;
(2)試判斷x=1,x=3是函數f(x)的極大值點還是極小值點,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.在△ABC中,下列命題錯誤的是( 。
A.∠A>∠B的充要條件是sinA>sinB
B.∠A>∠B的充要條件是cosA<cosB
C.∠A>∠B的充要條件是tanA>tanB
D.∠A>∠B的充要條件是$\frac{cosA}{sinA}<\frac{cosB}{sinB}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.下列函數在其定義域內,既是奇函數又是增函數的為( 。
A.y=-$\frac{1}{x}$B.y=x|x|C.y=x+1D.y=-x2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的兩個焦點為F1,F(xiàn)2,過F1的直線交橢圓于A、B兩點,若|AB|=6,則|AF1|+|BF1|的值為( 。
A.10B.8C.16D.12

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.如圖甲,在邊長為4的等邊三角形ABC中,點E,F(xiàn)分別為AB,AC上一點,且EF∥BC,EF=2a,沿EF將三角形AEF折起,使得平面AEF⊥平面EFCB,形成一個如圖乙所示的四棱錐,設O為EF的中點.
(1)求證:AO⊥BE;
(2)求二面角F-AE-B的正弦值.

查看答案和解析>>

同步練習冊答案