已知a>b>0,則下列不等式成立的是( 。
A、a2<b2
B、
1
a
1
b
C、|a|<|b|
D、2a>2b
考點(diǎn):不等式的基本性質(zhì)
專題:不等式的解法及應(yīng)用
分析:考察指數(shù)函數(shù)y=2x的單調(diào)性即可得出.
解答: 解:∵a>b>0,
∴2a>2b,
故選:D.
點(diǎn)評(píng):本題考查了指數(shù)函數(shù)的單調(diào)性、不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題.①對(duì)任意的x∈R,x2+2>0;②對(duì)任意的x∈N,x4≥1;③存在x∈Z,x3<1;④存在x∈Q,使x2=3.其中真命題的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=
1
2
,an+1=
2an+2n-2,n為奇數(shù)
-an-n,n為偶數(shù)
,數(shù)列{an}的前n項(xiàng)和為Sn,bn=a2n,其中n∈N*
(Ⅰ) 求a2+a3的值;
(Ⅱ) 證明:數(shù)列{bn}為等比數(shù)列;
(Ⅲ) 是否存在n(n∈N*),使得S2n+1-
41
2
=b2n?若存在,求出所有的n的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y),且
m
n

(1)將y表示為x的函數(shù)f(x),并求f(x)的對(duì)稱軸的方程;
(2)若函數(shù)y=f(x)的圖象在y軸的右側(cè)的最高點(diǎn)的橫坐標(biāo)組成一個(gè)數(shù)列{an},求a1+a2+…+a2016的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,用粗線畫出了某多面體的三視圖,則該多面體最長(zhǎng)的棱長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,如果菱形OABC的邊長(zhǎng)為2,點(diǎn)A在x軸上,則菱形內(nèi)(不含邊界)整點(diǎn)(橫縱坐標(biāo)都是整數(shù)的點(diǎn))個(gè)數(shù)的取值集合是( 。
A、{1,2}
B、{1,2,3}
C、{0,1,2}
D、{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P是圓x2+y2=1上一點(diǎn),Q是滿足
x≥0
y≥0
x+y≥2
的平面區(qū)域內(nèi)的點(diǎn),則|PQ|的最小值為( 。
A、2
2
B、
2
+1
C、2
D、
2
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的奇函數(shù),且f(x+2)為偶函數(shù).若f(1)=1,則f(8)+f(9)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=a+sinbx(b>0且b≠1)的圖象如圖所示,那么函數(shù)y=logb(x-a)的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案