2.log23•log34…log3132=5.

分析 由對(duì)數(shù)的換底公式,可得結(jié)論.

解答 解:由對(duì)數(shù)的換底公式,可得log23•log34…log3132=$\frac{lg3}{lg2}•\frac{lg4}{lg3}•…•\frac{lg32}{lg31}$=log232=5.
故答案為:5

點(diǎn)評(píng) 本題考查對(duì)數(shù)的換底公式,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,且|$\overrightarrow{a}$|=4,|$\overrightarrow$|=2,求:
(1)(2$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+3$\overrightarrow$); 
(2)|2$\overrightarrow{a}$-3$\overrightarrow$|;
(3)向量2$\overrightarrow{a}$在向量$\overrightarrow$方向上正攝影的數(shù)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)向量$\overrightarrow{a}$=(1,1),i是虛數(shù)單位,復(fù)數(shù)(m-i)•i所對(duì)應(yīng)的向量為$\overrightarrow$,若$\overrightarrow{a}⊥\overrightarrow$,則實(shí)數(shù)m的值等于( 。
A.1B.-1C.0D.±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)y=($\frac{1}{2}$)${\;}^{{x}^{2}}$減區(qū)間為[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,不等式f(x)<2x的解集是(-1,2),且方程f(x)+$\frac{9}{4}$a=0有兩個(gè)相等的實(shí)數(shù)根.
(I)求f(x)的解析式;
(Ⅱ)已知不等式f(x)<0的解集為M,不等式f(x)>2(m+1)x-m2-m-2的解集為N,若M∪N=N,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求函數(shù)f(x)=$\frac{\frac{1}{co{s}^{2}x}-tanx}{\frac{1}{co{s}^{2}x}+tanx}$+3的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)g(x+1)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤1}\\{2x,1<x<2}\end{array}\right.$,求g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若f(x)的定義域?yàn)閇-3,1],則函數(shù)F(x)=f(x)+f(-x)的定義域?yàn)椋ā 。?table class="qanwser">A.[-3,3]B.[-1,1]C.[-3,1]D.[-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求下列函數(shù)的定義域:
(1)y=103x;
(2)y=0.8${\;}^{\frac{1}{x}}$;
(3)y=3${\;}^{\frac{1}{x-4}}$;
(4)y=$\sqrt{1-(\frac{1}{2})^{x}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案