已知虛數(shù)z=(x-2)+yi(x,y∈R),若|z|=,則的最大值是

[  ]

A.
B.
C.
D.
答案:D
解析:

(x2)yi是虛數(shù),∴y0,

|(x2)yi|,∴3,根據(jù)幾何意義,是圓3上的點(diǎn)(x,y)與原點(diǎn)連線的斜率,畫(huà)圖求得最大值為tanBOA,其中OA為圓的切線.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:高二數(shù)學(xué) 教學(xué)與測(cè)試 題型:013

已知虛數(shù)z=(x-2)+yi(x,y∈R),若|z|=,則的最大值是

[  ]

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:選修設(shè)計(jì)數(shù)學(xué)1-2北師大版 北師大版 題型:044

已知復(fù)數(shù)z=x2-2x-3+(x-2)i是虛部為正數(shù)的非純虛數(shù),求實(shí)數(shù)x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:黑龍江省慶安一中2009-2010學(xué)年高二上學(xué)期期中考試數(shù)學(xué)試題 題型:044

已知復(fù)數(shù)z=x+yi(x,y∈R)在復(fù)平面上對(duì)應(yīng)的點(diǎn)為M.

(Ⅰ)設(shè)集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機(jī)取一個(gè)數(shù)作為x,從集合Q中隨機(jī)取一個(gè)數(shù)作為y,求復(fù)數(shù)z為純虛數(shù)的概率;

(Ⅱ)設(shè)x∈[0,3],y∈[0,4],求點(diǎn)M落在不等式組:所表示的平面區(qū)域內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

22.已知復(fù)數(shù)z0=l-mi(m>0),z=x+yi和w=x′+y′i.其中x,y,x′,y′均為實(shí)數(shù).i為虛數(shù)單位,且對(duì)于任意復(fù)數(shù)z,有w=·,.

(1)試求m的值,并分別寫(xiě)出x′和y′用x、y表示的關(guān)系式;

(2)將(x,y)作為點(diǎn)P的坐標(biāo),(x′,y′)作為點(diǎn)Q的坐標(biāo),上述關(guān)系式可以看作是坐標(biāo)平面上點(diǎn)的一個(gè)變換:它將平面上的點(diǎn)P變到這一平面上的點(diǎn)Q.

當(dāng)點(diǎn)P在直線y=x+1上移動(dòng)時(shí),試求點(diǎn)P經(jīng)該變換后得到的點(diǎn)Q的軌跡方程.

(3)是否存在這樣的直線:它上面的任一點(diǎn)經(jīng)上述變換后得到的點(diǎn)仍在c 該直線上?若存在,試求出所有這些直線;若不存在,則說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案