已知橢圓C:
x2
a2
+
y2
b2
=1
,以拋物線y2=16x的焦點為橢圓的一個焦點,且短軸一個端點與兩個焦點可組成一個等邊三角形,則橢圓C的離心率為( 。
分析:由題意可得橢圓C:
x2
a2
+
y2
b2
=1
的焦點F2(-(4,0),則橢圓的另一個焦點F1(-4,0),短軸的一個端點B(0,b)則△BF1F2為等邊三角形可得,BF1=BF2=F1F2=8,從而可得2a=16即a=8,代入橢圓的離心率公式e=
c
a
可求
解答:解:由題意可得,拋物線y2=16x的焦點為(4,0)即橢圓C:
x2
a2
+
y2
b2
=1
的焦點F2(4,0),
由題意可得,橢圓的另一個焦點F1(-4,0),短軸的一個端點B(0,b)
則由△BF1F2為等邊三角形可得,BF1=BF2=F1F2=8
由橢圓的定義可得2a=16即a=8
e=
c
a
=
1
2

故選B
點評:本題主要考查了利用橢圓的性質(zhì)求解橢圓的方程,橢圓的性質(zhì),屬于基本知識的簡單應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過點P(1,
3
2
)

(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2
3
,右焦點F與拋物線y2=4x的焦點重合,O為坐標原點.
(1)求橢圓C的方程;
(2)設(shè)A、B是橢圓C上的不同兩點,點D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點,且以MN為直徑的圓經(jīng)過坐標原點O.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長軸長是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)過點P(0,-2)的直線l交橢圓于M,N兩點,且M,N不與橢圓的頂點重合,若以MN為直徑的圓過橢圓C的右頂點A,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長為2,離心率為
2
2
,設(shè)過右焦點的直線l與橢圓C交于不同的兩點A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習冊答案