在區(qū)間[0,1]上隨機(jī)取一個數(shù)x,則事件“cos
πx
2
1
2
”發(fā)生的概率為
 
分析:本題是一個等可能事件的概率,試驗(yàn)發(fā)生包含的事件對應(yīng)的區(qū)間長度是1,根據(jù)余弦曲線的特點(diǎn),做出當(dāng)x∈[
2
3
,1]
時,即區(qū)間長度是
1
3
時,滿足條件,得到概率.
解答:解:由題意知本題是一個等可能事件的概率,
試驗(yàn)發(fā)生包含的事件對應(yīng)的區(qū)間長度是1,
滿足條件的事件是cos
πx
2
1
2
,
根據(jù)余弦曲線的特點(diǎn),做出當(dāng)x∈[
2
3
,1]
時,
即區(qū)間長度是
1
3
時,滿足條件,
∴要求的概率是P=
1
3

故答案為:
1
3
點(diǎn)評:本題考查等可能事件的概率,本題解題的關(guān)鍵是看出滿足條件的事件對應(yīng)的自變量x的區(qū)間,本題是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x
x2+a

在探究a=1時,函數(shù)f(x)在區(qū)間[0,+∞)上的最大值問題.為此,我們列表如下
y 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
請觀察表中y值隨x值變化的特點(diǎn),解答以下兩個問題.
(1)寫出函數(shù)f(x)在[0,+∞)(a=1)上的單調(diào)區(qū)間;指出在各個區(qū)間上的單調(diào)性,并對其中一個區(qū)間的單調(diào)性用定義加以證明.
(2)寫出函數(shù)f(x)(a=1)的定義域,并求f(x)值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x
x2+a
.請完成以下任務(wù):
(Ⅰ)探究a=1時,函數(shù)f(x)在區(qū)間[0,+∞)上的最大值.為此,我們列表如下
x 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
請觀察表中y值隨x值變化的特點(diǎn),解答以下兩個問題.
(1)寫出函數(shù)f(x),在[0,+∞)上的單調(diào)區(qū)間;指出在各個區(qū)間上的單調(diào)性,并對其中一個區(qū)間的單調(diào)性用定義加以證明.
(2)請回答:當(dāng)x取何值時f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下兩個步驟研究a=1時,函數(shù)f(x)=
4x
x2+a
,(x∈R)
的值域.
(1)判斷函數(shù)f(x)的奇偶性;
(2)結(jié)合已知和以上研究,畫出函數(shù)f(x)的大致圖象,指出函數(shù)的值域.
(Ⅲ)己知a=-1,f(x)的定義域?yàn)椋?1,1),解不等式f(4-3x)+f(x-
3
2
)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省執(zhí)信中學(xué)2011-2012學(xué)年高一上學(xué)期期中考試數(shù)學(xué)試題 題型:044

探究函數(shù)的最小值,并確定取得最小值時x的值.列表如下,請觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.

已知:函數(shù)在區(qū)間(0,1)上遞減,問:

(1)函數(shù)在區(qū)間_______上遞增.

當(dāng)x=_______時,_______;

(2)函數(shù)在定義域內(nèi)有最大值或最小值嗎?如有,是多少?此時x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式.請完成以下任務(wù):
(Ⅰ)探究a=1時,函數(shù)f(x)在區(qū)間[0,+∞)上的最大值.為此,我們列表如下
x00.10.20.50.811.21.51.8246
y00.3960.7691.61.95121.9671.8461.6981.60.9410.649
請觀察表中y值隨x值變化的特點(diǎn),解答以下兩個問題.
(1)寫出函數(shù)f(x),在[0,+∞)上的單調(diào)區(qū)間;指出在各個區(qū)間上的單調(diào)性,并對其中一個區(qū)間的單調(diào)性用定義加以證明.
(2)請回答:當(dāng)x取何值時f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下兩個步驟研究a=1時,函數(shù)數(shù)學(xué)公式的值域.
(1)判斷函數(shù)f(x)的奇偶性;
(2)結(jié)合已知和以上研究,畫出函數(shù)f(x)的大致圖象,指出函數(shù)的值域.
(Ⅲ)己知a=-1,f(x)的定義域?yàn)椋?1,1),解不等式數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省綿陽市實(shí)驗(yàn)高中高一(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).請完成以下任務(wù):
(Ⅰ)探究a=1時,函數(shù)f(x)在區(qū)間[0,+∞)上的最大值.為此,我們列表如下
x0.10.20.50.811.21.51.8246
y0.3960.7691.61.95121.9671.8461.6981.60.9410.649
請觀察表中y值隨x值變化的特點(diǎn),解答以下兩個問題.
(1)寫出函數(shù)f(x),在[0,+∞)上的單調(diào)區(qū)間;指出在各個區(qū)間上的單調(diào)性,并對其中一個區(qū)間的單調(diào)性用定義加以證明.
(2)請回答:當(dāng)x取何值時f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下兩個步驟研究a=1時,函數(shù)的值域.
(1)判斷函數(shù)f(x)的奇偶性;
(2)結(jié)合已知和以上研究,畫出函數(shù)f(x)的大致圖象,指出函數(shù)的值域.
(Ⅲ)己知a=-1,f(x)的定義域?yàn)椋?1,1),解不等式

查看答案和解析>>

同步練習(xí)冊答案