【題目】已知橢圓的離心率,一個長軸頂點在直線上,若直線與橢圓交于,兩點,為坐標原點,直線的斜率為,直線的斜率為.

1)求該橢圓的方程.

2)若,試問的面積是否為定值?若是,求出這個定值;若不是,請說明理由.

【答案】(1);(2)的面積為定值1.

【解析】

1)根據(jù)離心率及長軸即可寫出橢圓標準方程(2)設,,當直線的斜率存在時,設其方程為,求,點到直線的距離,寫出三角形面積,化簡即可求證.

,又由于,一個長軸頂點在直線上,

可得:,,.

1)故此橢圓的方程為.

2)設,當直線的斜率存在時,設其方程為,

聯(lián)立橢圓的方程得:,

,可得,

,

又點到直線的距離,

由于,

可得:

,

當直線的斜率不存在時,可算得:,

的面積為定值1.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】 設命題p:函數(shù)y在定義域上為減函數(shù);命題qa,b(0,+∞),當ab=1時,=3.以下說法正確的是(  )

A. pq為真B. pq為真

C. pqD. p,q均假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列五個命題:

①直線平行于平面內(nèi)的一條直線,則

②若是銳角三角形,則

③已知是等差數(shù)列的前項和,若,則;

④當時,不等式恒成立,則實數(shù)的取值范圍為.

其中正確命題的序號為___________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知方程4個不同的根,則實數(shù)的取值范圍是

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率為,直線與橢圓C交于A,B兩點,且

(1)求橢圓C的方程.

(2)不經(jīng)過點的直線被圓截得的弦長與橢圓C的長軸長相等,且直線與橢圓C交于D,E兩點,試判斷的周長是否為定值?若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】昆明市某中學的環(huán)保社團參照國家環(huán)境標準制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應關(guān)系如下表(假設該區(qū)域空氣質(zhì)量指數(shù)不會超過300),該社團將該校區(qū)在2018年100天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如圖4,把該直方圖所得頻率估計為概率.

空氣質(zhì)量指數(shù)

空氣質(zhì)量等級

1級優(yōu)

2級良

3級輕度污染

4度中度污染

5度重度污染

6級嚴重污染

(1)請估算2019年(以365天計算)全年空氣質(zhì)量優(yōu)良的天數(shù)(未滿一天按一天計算);

(2)用分層抽樣的方法共抽取10天,則空氣質(zhì)量指數(shù)在,的天數(shù)中各應抽取幾天?

(3)已知空氣質(zhì)量等級為1級時不需要凈化空氣,空氣質(zhì)量等級為2級時每天需凈化空氣的費用為2000元,空氣質(zhì)量等級為3級時每天需凈化空氣的費用為4000元若在(2)的條件下,從空氣質(zhì)量指數(shù)在的天數(shù)中任意抽取兩天,求這兩天的凈化空氣總費用的分布列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為兩個平面,則的充要條件是( )

A. 內(nèi)有無數(shù)條直線與β平行B. 垂直于同一平面

C. 平行于同一條直線D. 內(nèi)有兩條相交直線與平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,

,求函數(shù)的單調(diào)區(qū)間,并求出其極值;

若函數(shù)存在兩個零點,k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點(1,2)是函數(shù)的圖象上一點,數(shù)列的前項和是.

(1)求數(shù)列的通項公式;

(2)若,求數(shù)列的前n項和

查看答案和解析>>

同步練習冊答案