當(dāng)n∈N+時,定義函數(shù)N(n)表示n的最大奇因數(shù).如N(1)=1,N(2)=1,N(3)=3,N(4)=1,N(5)=5,N(10)=5,記S(n)=N(2n-1)+N(2n-1+1)+…+N(2n-1)(n∈R+)則:(1)S(3)=
16
16
;(2)S(n)=
4n-1
4n-1
分析:由題意當(dāng)n∈N*時,定義函數(shù)N(n)表示n的最大奇因數(shù),利用此定義有知道N(2n)=1,當(dāng)n為奇數(shù)時,N(n)=n,在從2n-1到2n-1這2n-1個數(shù)中,奇數(shù)和偶數(shù)各有2n-2個.且在這2n-2個偶數(shù)中,不同的偶數(shù)的最大奇因數(shù)一定不同,那么N(2n-1)+N(2n-1+1)+N(2n-1+2)+…+N(2n-1),利用累加法即可求得.
解答:解:因N(2n)=1,
當(dāng)n為奇數(shù)時,N(n)=n,
在從2n-1到2n-1這2n-1個數(shù)中,奇數(shù)有2n-2個,偶數(shù)有2n-2個.
在這2n-2個偶數(shù)中,不同的偶數(shù)的最大奇因數(shù)一定不同,
從2n-1到2n-1共有2n-1個數(shù),而1到2n-1共有2n-1個不同的奇數(shù),
故有N(2n-1)=21-1=1,N(2n-1+1)=22-1=3,…,N(2n-1)=2n-1.
那么S(n)=N(2n-1)+N(2n-1+1)+N(2n-1+2)+…+N(2n-1)
=1+3+5+…+2n-1=
2n-1(1+2n-1)
2
=4n-1
當(dāng)n=3時,S(3)=16.
故答案為:16;4n-1
點(diǎn)評:此題重點(diǎn)考查了學(xué)生對于新定義的準(zhǔn)確理解,另外找準(zhǔn)要求的和式具體的數(shù)據(jù),有觀察分析要求的和式的特點(diǎn)選擇累加求和,并計算中需用等比數(shù)列的求和公式,重點(diǎn)是了學(xué)生的理解能力及計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•順義區(qū)二模)對于定義域?yàn)锳的函數(shù)f(x),如果任意的x1,x2∈A,當(dāng)x1<x2時,都有f(x1)<f(x2),則稱函數(shù)f(x)是A上的嚴(yán)格增函數(shù);函數(shù)f(k)是定義在N*上,函數(shù)值也在N*中的嚴(yán)格增函數(shù),并且滿足條件f(f(k))=3k.
(Ⅰ)判斷函數(shù)f(3x)=2×3x(x∈N)是否是N上的嚴(yán)格增函數(shù);
(Ⅱ)證明:f(3k)=3f(k);
(Ⅲ)是否存在正整數(shù)k,使得f(k)=2012,若存在求出k值;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•順義區(qū)一模)對于定義域?yàn)锳的函數(shù)f(x),如果任意的x1,x2∈A,當(dāng)x1<x2時,都有f(x1)<f(x2),則稱函數(shù)f(x)是A上的嚴(yán)格增函數(shù);函數(shù)f(k)是定義在N*上,函數(shù)值也在N*中的嚴(yán)格增函數(shù),并且滿足條件f(f(k))=3k.
(Ⅰ)證明:f(3k)=3f(k);
(Ⅱ)求f(3k-1)(k∈N*)的值;
(Ⅲ)是否存在p個連續(xù)的自然數(shù),使得它們的函數(shù)值依次也是連續(xù)的自然數(shù);若存在,找出所有的p值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:順義區(qū)一模 題型:解答題

對于定義域?yàn)锳的函數(shù)f(x),如果任意的x1,x2∈A,當(dāng)x1<x2時,都有f(x1)<f(x2),則稱函數(shù)f(x)是A上的嚴(yán)格增函數(shù);函數(shù)f(k)是定義在N*上,函數(shù)值也在N*中的嚴(yán)格增函數(shù),并且滿足條件f(f(k))=3k.
(Ⅰ)證明:f(3k)=3f(k);
(Ⅱ)求f(3k-1)(k∈N*)的值;
(Ⅲ)是否存在p個連續(xù)的自然數(shù),使得它們的函數(shù)值依次也是連續(xù)的自然數(shù);若存在,找出所有的p值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年北京市順義區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

對于定義域?yàn)锳的函數(shù)f(x),如果任意的x1,x2∈A,當(dāng)x1<x2時,都有f(x1)<f(x2),則稱函數(shù)f(x)是A上的嚴(yán)格增函數(shù);函數(shù)f(k)是定義在N*上,函數(shù)值也在N*中的嚴(yán)格增函數(shù),并且滿足條件f(f(k))=3k.
(Ⅰ)證明:f(3k)=3f(k);
(Ⅱ)求f(3k-1)(k∈N*)的值;
(Ⅲ)是否存在p個連續(xù)的自然數(shù),使得它們的函數(shù)值依次也是連續(xù)的自然數(shù);若存在,找出所有的p值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年北京市順義區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

對于定義域?yàn)锳的函數(shù)f(x),如果任意的x1,x2∈A,當(dāng)x1<x2時,都有f(x1)<f(x2),則稱函數(shù)f(x)是A上的嚴(yán)格增函數(shù);函數(shù)f(k)是定義在N*上,函數(shù)值也在N*中的嚴(yán)格增函數(shù),并且滿足條件f(f(k))=3k.
(Ⅰ)證明:f(3k)=3f(k);
(Ⅱ)求f(3k-1)(k∈N*)的值;
(Ⅲ)是否存在p個連續(xù)的自然數(shù),使得它們的函數(shù)值依次也是連續(xù)的自然數(shù);若存在,找出所有的p值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案