【題目】正四面體ABCD中,M是棱AD的中點,O是點A在底面BCD內(nèi)的射影,則異面直線BM與AO所成角的余弦值為(  )
A.
B.
C.
D.

【答案】B
【解析】解:取BC中點E,DC中點F,連結(jié)DE、BF,則由題意得DE∩BF=O,

取OD中點N,連結(jié)MN,則MN∥AO,

∴∠BMN是異面直線BM與AO所成角(或所成角的補角),

設(shè)正四面體ABCD的棱長為2,由BM=DE= ,OD= ,

∴AO= = ,∴MN= ,

∵O是點A在底面BCD內(nèi)的射影,MN∥AO,∴MN⊥平面BCD,

∴cos∠BMN= = = ,

∴異面直線BM與AO所成角的余弦值為

故選:B.

【考點精析】利用異面直線及其所成的角對題目進行判斷即可得到答案,需要熟知異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓O是一半徑為10米的圓形草坪,為了滿足周邊市民跳廣場舞的需要,現(xiàn)規(guī)劃在草坪上建一個廣場,廣場形狀如圖中虛線部分所示的曲邊四邊形,其中A,B兩點在⊙O上,A,B,C,D恰是一個正方形的四個頂點.根據(jù)規(guī)劃要求,在A,B,C,D四點處安裝四盞照明設(shè)備,從圓心O點出發(fā),在地下鋪設(shè)4條到A,B,C,D四點線路OA,OB,OC,OD.

(1)若正方形邊長為10米,求廣場的面積;
(2)求鋪設(shè)的4條線路OA,OB,OC,OD總長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】每年5月17日為國際電信日,某市電信公司每年在電信日當天對辦理應(yīng)用套餐的客戶進行優(yōu)惠,優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠200元,選擇套餐二的客戶可獲得優(yōu)惠500元,選擇套餐三的客戶可獲得優(yōu)惠300元.根據(jù)以往的統(tǒng)計結(jié)果繪出電信日當天參與活動的統(tǒng)計圖,現(xiàn)將頻率視為概率.

(1)求某兩人選擇同一套餐的概率;
(2)若用隨機變量X表示某兩人所獲優(yōu)惠金額的總和,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】點P是雙曲線 的右支上一點,其左,右焦點分別為F1 , F2 , 直線PF1與以原點O為圓心,a為半徑的圓相切于A點,線段PF1的垂直平分線恰好過點F2 , 則離心率的值為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點(2,3)在橢圓 上,設(shè)A,B,C分別為橢圓的左頂點、上頂點、下頂點,且點C到直線AB的距離為
(I)求橢圓C的方程;
(II)設(shè)M(x1 , y1),N(x2 , y2)(x1≠x2)為橢圓上的兩點,且滿足 = ,求證:△MON的面積為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣a+lnx.
(Ⅰ)若a=1,求證:當x>1時,f(x)>2x﹣1;
(Ⅱ)若存在x0≥e,使f(x0)<2lnx0 , 求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知D是直角ABC斜邊BC上一點,AC= DC,
(Ⅰ)若∠DAC=30°求角B的大。
(Ⅱ)若BD=2DC,且 AD=2 ,求DC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個袋中有大小相同,編號分別為1,2,3,4,5的五個球,從中有放回地每次取一個球,共取3次,取得三個球的編號之和不小于13的概率為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點F(1,0),直線l:x=﹣1,直線l'垂直l于點P,線段PF的垂直平分線交l'于點Q.
(1)求點Q的軌跡方程C;
(2)過F做斜率為 的直線交C于A,B,過B作l平行線交C于D,求△ABD外接圓的方程.

查看答案和解析>>

同步練習冊答案